Homework 1

- 1. Did you do the reading? YES/NO/SORTA
- 2. Did you do the reading before class? YES/NO/SORTA
- 3. How long did you spend on this homework (rounding up)? _____hours.

1 Sets

Objective: Read and write formal descriptions of sets. Manipulate sets using basic set operations. Give a formal description of the following sets.

- The set of prime numbers less than 15.
- The set consisting of the strings *aba* and *baa*.
- The set of integers less than 8.
- The set containing the empty string.
- The set that doesn't contain anything at all.

Let $X = \{1, 2, 3, 4\}$ and let $Y = \{2, 4\}$.

- Is X a subset of Y?
- Is Y a subset of X?
- What is $X \cap Y$?
- What is $X \cup Y$?
- What is $Y \times X$?
- What is $X \setminus Y$?
- What is the power set of Y?

2 Proofs

Objective: Write clear, correct proofs using different techniques. Identify flawed arguments.

The questions in this section all deal with something called graph isomorphism. Let G = (V, E) and H = (U, D) be two undirected graphs. An isomorphism is a bijection $f : V \to U$ such that $\{u, v\} \in E$ if and only if $\{f(u), f(v)\} \in D$ (Recall that a bijection is a one-to-one, onto function).

If there exists an isomorphism between the vertex sets of graphs G and H, we say that G and H are *isomorphic* and denote this $G \cong H$.

• Prove that \cong is an equivalence relation. Recall, this means that \cong is symmetric, reflexive, and transitive.

• Find the bug in the following inductive proof that in any set of h graphs, every pair is isomorphic. Express your answer in one clear, concise sentence.

Base case: If h = 1. In any set containing just one graph, the one graph is isomorphic to itself since \cong is reflexive.

Inductive Step: For $k \ge 1$, assume that the claim is true for h = k and prove that it is true for h = k + 1. Take any set X of k + 1 graphs. We show that every pair of graphs in X is isomorphic. It will suffice to show that any two graphs G and H in X are isomorphic. By induction, H is isomorphic to every graph in the set $X_1 = X \setminus G$ because $|X_1| = k$. Similarly, by induction, G is isomorphic to every graph in the set $X_2 = X \setminus H$. Let K be a graph in $X_1 \cap X_2$. So, $G \cong K$ and $H \cong K$. Thus, $G \cong H$ because \cong is transitive.

• The complement of a graph G = (V, E) is another graph $G^{\circ} = (V, E^{\circ})$ with the same vertex set V and contains an edge for every $\{u, v\}$ such that $\{u, v\} \notin E$. Let G be the cycle graph of length 5 with the vertex set $\{0, 1, 2, 3, 4\}$. The edges in G are the pairs $\{\{i, j\} \mid j \equiv i + 1 \pmod{5}\}$. Prove that $G \cong G^{\circ}$ by giving the isomorphism.