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1 Introduction

The goal of homology inference is to compute a space’s
shape from a point cloud sampled near it. Given such
a sample, one may want to know when we can reliably
infer the homology of the space in question. Naturally,
this requires making assumptions on the sample as well
as the underlying space.

Niyogi, Smale, and Weinberger showed that one can
infer the homology of a smooth manifold from finite
points chosen uniformly at random near its surface [5].
Chazal and Lieutier relaxed this to include non-smooth
bounded spaces in Rd via the so-called weak feature
size [1]. Both assume that there is a sampled point
within ε of every point in the space in their sample. In
their work on sensor networks, de Silva and Ghrist give
sampling conditions for checking coverage of a shrunken
version of a space assuming one can compute the dis-
tance from points to the boundary [3].

We show how these approaches can be combined in
order to provide a computable inference of the homology
of domain from a coordinate-free point sample. We do
so on more general spaces in Rd, only assuming a lower
bound on the weak feature size of a compact, locally
contractible domain, and that we can compute the dis-
tance to the boundary and between close pairs of sample
points.

2 Background

Distance Functions. For a compact set A ⊂ Rd, and
metric d(·, ·), define the distance function from x ∈ Rd
to A as d(x,A) := miny∈A d(x, y). The ε-offsets of
a set A are defined as Aε := {x ∈ X | d(x,A) ≤
ε} = ∪x∈Aballε(x). Recall the set difference, or rel-
ative complement, of two sets A and B is defined as
A \ B := {a ∈ A | a 6∈ B}. In this paper, the ambi-
ent space will be the one-point compactification of Rd,
Rd ∪ {∞}, which is homeomorphic to the d-sphere, Sd,
and the metric will be the Euclidean metric, ‖ · ‖.

Given a compact set A ⊂ Rd, the critical value as-
sociated to a critical point x of the distance function is
d(x,A). The weak feature size of A is defined to be
the least positive critical value of d(·, A) and is denoted
wfs(A).
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Homology. Homology is a tool from algebraic topol-
ogy that gives a characterization of the shape of a space
with regards to its k-dimensional holes. It is a topolog-
ical invariant and as such it is preserved under homeo-
morphisms. We assume singular homology over a field,
which implies that the resulting homology groups of a
space X, written H∗(X) when considered over all di-
mensions, are vector spaces. When referencing homol-
ogy with respect to a specific dimension k, we write
Hk(X). If there exists a map between two spaces, e.g.
f : X → Y , then there is a map at the level of homol-
ogy, f∗ : H∗(X) → H∗(Y ). We will denote such a map
by f∗ := H∗(X → Y ).

Čech and Rips Complexes. When computing ho-
mology in practice, one often needs a finite simplicial
complex to represent the space as their homology can
be calculated via matrix multiplication.

Given a finite collection of points P ∈ Rd, its Čech
complex at scale ε is defined as Cε(P ) := {σ ⊆ P |
∃x ∈ Rd : maxp∈σ ‖x− p‖ ≤ ε}.

Of note is that the Čech complex of a point set P
at scale ε is the nerve of the collection {ballε(p)}p∈P ,
whose union is P ε. By the nerve theorem [4] , Cε(P ) is
homotopic to P ε, and thus H∗(Cε(P )) ∼= H∗(P

ε). This
implies that by studying the homology of the ε-Čech
complex, one knows the homology of the ε-offsets.

As we simply know the distance between close points
in the sample, this is not enough to compute the Čech
complex. Instead we compute the Rips complex, as this
can be computed by checking pairs of points’ distance.
The (Vietoris-)Rips complex of P at scale ε is de-
fined as Rε(P ) := {σ ⊆ P | {p, q} ∈ Cε(P ) for all p, q ∈
σ}. The following inclusions help us in relating the
knowledge about a Čech complex to a Rips complex.

For all ε > 0 and a finite point set P ⊆ Rd, Cε(P ) ⊆
Rε(P ) ⊆ Cϑdε(P ), where ϑd =

√
2d
d+1 .

3 Results

Throughout we assume a compact, locally contractible
domain D ⊂ Rd, with boundary B, and a finite point
sampling P ⊂ D. Given a constant β ≥ 0, define Uβ :=
P \ Bβ = {p ∈ P | d(p,B) > β}. These are the points
of P at least a distance of β away from the boundary.
This definition leads to the following lemma relating a
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subsampling to a shrunken domain, assuming we have
coverage.

Lemma 1 Given a domain D with boundary B and a
finite set P ⊂ D with α > 0 such that D \ B2α ⊆ Pα,
for all γ, β such that γ, β ≥ α, we have the following.

Uγβ+γ ⊆ D \ B
β and D \ Bβ+γ ⊆ Uγβ .

The following lemma relates the homology of the in-
clusion between two sub-samplings of P to the homology
of the domain D.

Lemma 2 Given a domain D with boundary B and a
finite set P ⊂ D with α > 0 such that D \ B2α ⊆ Pα,
let β, γ, ε, δ be constants such that δ ≥ ε ≥ γ ≥ α
and β ≥ ε + δ + γ. If wfs(B) > β + γ, then for all
λ ∈ (0,wfs(D)),

rk(H∗(U
γ
β ↪→ Uεδ )) = dim(H∗(Dλ)).

From this lemma we can prove our main theorem by
switching to the Čech and Rips complexes. We assume
that we know the distance between all p, q ∈ P such
that d(p, q) < ϑdα, where α corresponds to the scale
at which we have coverage. The constants used are a
result of Lemma 2 and those required to achieve the
Rips-Čech inclusions.

The theorem tells that we can compute the homology
of a small offset of the domain by computing the Rips
complexes at the two scales, and computing the image of
the induced map between their homology groups. Fur-
thermore, if D is homotopic to Dλ, the image tells the
homology of the domain itself.

Theorem 3 Given D ⊂ Rd, a compact, locally con-
tractible domain with boundary B such that wfs(B) >
(2ϑ2d + 4ϑd + 2)α, and finite point set P ⊂ D such that
D\B2α ⊆ Pα, the following holds for all λ ∈ (0,wfs(D)).

im(H∗(Rα(U(2ϑ2
d
+4ϑd+1)α) ↪→Rϑdα(U(2ϑ2

d
+ϑd)α

))) ∼= H∗(Dλ).

Proof. Let 0 < α ≤ β ≤ γ and δ1 ≥ δ2 ≥ δ3 ≥ δ4 ≥ 0.
This leads to the following inclusions of sub-samplings.

Uαδ1 Uβδ2 Uβδ3 Uγδ4

If β ≥ ϑdα and γ ≥ ϑdβ ≥ ϑ2dα, then we have the
following diagram with Čech and Rips complexes, with
the diagonal maps due to the Rips-Čech interleaving.

Cα(Uδ1) Cβ(Uδ2) Cβ(Uδ3) Cγ(Uδ4)

Rα(Uδ1) Rβ(Uδ3)

By applying the homology functor to the previous two
diagrams, we get a commutative diagram of maps at
the level of homology and vertical isomorphisms due to
the Persistent Nerve Lemma [2].

H∗(Uαδ1 ) H∗(U
β
δ2
) H∗(U

β
δ3
) H∗(U

γ
δ4
)

H∗(Cα(Uδ1 )) H∗(Cβ(Uδ2 )) H∗(Cβ(Uδ3 )) H∗(Cγ(Uδ4 ))

H∗(Rα(Uδ1 )) H∗(Rβ(Uδ3 ))

∼= ∼= ∼= ∼=

If δ1, δ4, α, γ and δ2, δ3, β are chosen such that they
satisfy the assumptions of Lemma 2, then we have the
following isomorphisms, as each vector space in question
is finite-dimensional

im(H∗(U
α
δ1 ↪→ Uγδ4))

∼= im(H∗(U
β
δ2

↪→ Uβδ3))
∼= H∗(Dλ).

This also gives us the following isomorphisms at the
level of the Čech complexes.

im(H∗(Cα(Uδ1) ↪→ Cγ(Uδ4)) ∼= im(H∗(Cβ(Uδ2) ↪→ Cβ(Uδ3)) ∼= H∗(Dλ).

The conditions for the Rips-Čech interleaving and
Lemma 2 are satisfied by making the following substi-
tutions. β = ϑdα, γ = ϑ2dα, δ1 = (2ϑ2d + 4ϑd + 1)α,
δ2 = (2ϑ2d + 3ϑd)α, δ3 = (2ϑ2d + ϑd)α, and δ4 = ϑ2dα.

Applying Lemma 3.2 from Chazal and Oudut [2]
to the following homological sequence using the above
Čech isomorphisms completes the proof.

H∗(Cα(Uδ1)) H∗(Rα(Uδ1)) H∗(Cβ(Uδ2))

H∗(Cβ(Uδ3)) H∗(Rβ(Uδ3)) H∗(Cγ(Uδ4))

�
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