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1 Introduction

In their seminal work on homological sensor networks,
de Silva and Ghrist showed the surprising fact that it
is possible to certify the coverage of a coordinate-free
sensor network even with very minimal knowledge of
the space to be covered [5]. We give a new, simpler
proof of the de Silva-Ghrist Topological Coverage Crite-
rion (TCC) that eliminates any assumptions about the
smoothness of the boundary of the underlying space,
allowing the results to be applied to much more gen-
eral problems. The new proof factors the geomet-
ric, topological, and combinatorial aspects of this ap-
proach. This allows us to extend the TCC to support
k-coverage, in which the domain is covered by k sensors,
and weighted coverage, in which sensors have varying
radii.

2 Background

Distances and Offsets. For a setX, let P(X) denote
the power set of X and let

(
X
k

)
denote the set of k-

element subsets of X. Given a compact point set A ⊂
Rd with weights wa ≥ 0 for all a ∈ A the weighted
distance from a point x to a weighted point y is defined
as the power distance

ρy(x)2 := ‖x− y‖2 + w2
y.

Such a set is referred to as a weighted set. We use
weighted distances to model coverage by disks of varying
radii, where larger weights correspond to smaller radii.

The weighted k-nearest neighbor distance from
a point x to k points in a weighted compact set A is
defined as

dk(x,A)2 := inf
K∈(A

k)
max
y∈K

ρy(x).
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Note that if wa = 0 for all a ∈ A and k = 1 then

d1(x,A) = d(x,A) := min
y∈A
‖x− y‖.

Such as set is said to be unweighted.
The canonical offsets of a set A at a scale ε are

defined as

Aε := {x ∈ X | d(x,A) ≤ ε} .

We use the word “canonical” to distinguish these offsets
from the weighted (k, ε)-offsets of a weighted compact
set A, defined to be

Aεk := {x ∈ X | dk(x,A) ≤ ε} .

If A is unweighted we obtain the (k, ε)-offsets, the
points within ε of k points in A. Note that for any
weighted set A we have Aεk ⊆ Aε. Thus, ε provides an
upper bound on the radii.

Čech and Rips Complexes. The weighted Čech
complex of a finite collection of points A in Rd at scale
ε is defined as

Čechε(A) :=

{
σ ⊆ A | ∃x ∈ Rd : max

p∈σ
ρp(x) ≤ ε

}
.

The (Vietoris-)Rips complex of A at scale ε is de-
fined

Ripsε(A) :=
{
σ ⊆ A | {p, q} ∈ Čechε(A) for all p, q ∈ σ

}
.

The standard Rips and Čech complexes are obtained
setting wp = 0 for all a ∈ A.

An important result about the relationship of Čech
and Rips complexes follows from Jung’s Theorem [7]
relating the diameter of a point set A and the radius of
the minimum enclosing ball:

Čechε(A) ⊆ Ripsε(A) ⊆ Čechϑdε(A), (1)

where the constant ϑd =
√

2d
d+1 for unweighted sets and

ϑd = 2 for weighted sets (see [1]).

The k-Barycentric Decomposition. Given a sim-
plicial complex S we define a flag in S to be an ordered
subset of simplices {σ1, . . . , σt} ⊂ S such that σ1 ⊂
. . . ⊂ σt. The barycentric decomposition of S is the
simplicial complex formed by the set of flags of S and is
defined as Bary(S) := {U ⊂ S | U is a flag of S}. The
vertices of the barycentric decomposition are the sim-
plices of S. We define the degree of a flag σ1 ⊂ · · · ⊂ σt
to be |σ1|.

Definition 1 The k-barycentric decomposition of
a complex S is defined

k-Bary(S) := {U ⊂ S | U is a flag in S of degree at least k} .
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The k-barycentric decomposition of the Čech and Rips
complexes of a finite point set A at a scale ε are denoted

Čech
k

ε(A) and Ripskε(A) respectively. By [8], we have
the following results relating the k-barycentric decom-
position of Čech and Rips complexes to the (k, ε)-offsets
of their vertex set A.

Theorem 1 Given a finite point set A, fixed k and
any ε ≥ 0 the k-barycentric decomposition of the Čech

complex Čech
k

ε(A) is homotopy equivalent to the (k, ε)-
offsets Aεk.

Theorem 2 The k-barycentric decomposition of the
Rips complex Ripskε(A) is a ϑd-approximation to the
(k, ε)-offsets Aεk.

This result allows us to extend Equation 1 to the k-
barycentric decomposition of the Čech and Rips com-
plexes as follows:

Čech
k

ε(A) ⊆ Ripskε(A) ⊆ Čech
k

ϑdε
(A), (2)

Homology and Persistent Homology. Homology
is a tool from algebraic topology that gives a computable
signature for a shape that is invariant under many kinds
of topological equivalences. It gives a way to quantify
the components, loops, and voids in a topological space.
It is a favored tool for applications because its compu-
tation can be phrased as a matrix reduction problem
with matrices representing a finite simplicial complex.

Throughout, we assume singular homology over a
field, so the nth homology group Hn(C) of a space C
is vector space. When considering the homology groups
of all dimensions, we will write H∗(C). We will make
extensive use of relative homology. That is, for a pair
of spaces (A,B) with B ⊆ A, we write H∗(A,B) for the
homology of A relative to B.

There are dual vector spaces to the homology groups
called the cohomology groups and are denoted with
superscripts as H∗(C). For finite-dimensional homology
groups the Alexander duality [6] implies that for pairs
of nonempty locally-contractible spaces in Rd∪{∞}, the
r-dimensional homology is isomorphic to the (d − r)-
dimensional cohomology of the complement space, i.e.

Hr(X,Y ) ∼= Hd−r(Y ,X).

3 Geometric Assumptions

Strange examples abound in topology. One must make
some assumptions about the underlying domain to make
the TCC possible. In this section, we will introduce
and illustrate the minimal geometric properties that
we require of the bounded domain to be covered. Our
goal is to weaken the geometric assumptions on the do-
main required for the topological coverage criterion of

de Silva & Ghrist to apply it to domains without smooth
manifold boundaries. In particular, for a domain D
with boundary B satisfying the following conditions for
0 ≤ 3α ≤ β, we want to certify that a sample P ⊂ D
covers D at scale α in the sense that D \ B2α ⊂ Pα.

Assumptions

1. (Non-degenerate) D is compact, locally con-
tractible, full dimensional in Rd and there
exists ε > 0 such that D ↪→ Dε induces a
homotopy equivalence.

2. (Components are not too small) The map
H0(D \ Bα+β ↪→ D \ B2α) is surjective.

3. (Components are not too close) The map
H0(D \ B2α ↪→ D2α) is injective.

Assumption 1 disallows degenerate cases in which
some of the theorems listed in Section 2 cannot be ap-
plied. For example, the Alexander duality as we have
stated it requires distinct, bounded, locally contractible
spaces.

Assumptions 2 and 3 prevent components from ap-
pearing and disappearing in the inclusions D \Bα+β ↪→
D \ B2α and D \ B2α ↪→ D2α, respectively. These re-
strictions are in order to allow us to reliably compare
the coverage region to the sampled subset of a discon-
nected domain in terms of the 0-dimensional homology,
or connected components of related spaces. Specifi-
cally, Assumption 2 disallows domains with components
that are too small to be included in the map from
D \ Bα+β ↪→ D \ B2α. Fig. 1 illustrates a domain in
which the induced map is not surjective, allowing our
algorithm to potentially report a false positive.

Assumption 3 requires that the components of D\B2α
are spaced out well enough so that no components are
joined with inclusion into D2α. This is required in order
to be able to reliably bound the number of connected
components of the shrunken domain by those of a com-
putable combinatorial structure. Fig. 2 illustrates do-
mains which violates Assumption 3 as components are
lost in both D \ B2α ↪→ D and D ↪→ D2α.

Relationship to Geometric Assumptions in Prior Work
Previous work on the TCC by de Silva & Ghrist is re-
stricted to connected domains with a smooth bound-
ary in which a particular region around the domain
has uniform thickness. This region is parameterized for
smooth manifolds in the work by the injectivity radius,
which serves to bound the region around the boundary
in which no topological changes occur. The injectivity
radius is closely related to the reach of a compact set K
in Rd, defined as the supremum of the distance r from
K to any point x with a unique closest point y ∈ K
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Figure 1: A domain that violates assumption 2 in which
H0(D\Bα+β ↪→ D\B2α) is not surjective as the upper-
right component is pinched out in D \ Bα+β .

Figure 2: A domain that violates Assumption 3 in which
H0(D \ B2α ↪→ D2α) is not injective as components are
lost in both the inclusions D\B2α ↪→ D and D ↪→ D2α.

such that d(x, y) = d(x,K). For non-smooth compact
sets K containing sharp corners, for example, note that
the reach of K will be equal to zero, as for all r > 0
there must exist some x ∈ Rd \ K with at least two
closest points in K a distance r from x approaching the
sharp corner of the set.

This notion of feature size approaching a non-smooth
feature is generalized in [2] as the µ-reach. Roughly
speaking, the µ-reach parameterizes the reach in order
to provide a meaningful measure of the region around
a potentially non-smooth compact subset K in which
no topological changes occur. In particular, the µ-reach
is equal to the reach for µ = 1, and converges to the
minimum distance from K to the critical points of the
distance function d(·,K) as µ approaches 0. This min-
imum distance is known as the weak feature size
of B and was introduced in [3] as a way to param-
eterize compact sets that may not be smooth mani-
folds. For our purposes it can be understood as the
minimum size of the topological features of a compact
set. Thus, for a compact subset K of Rd we have that
reach(K) ≤ reachµ(K) ≤ wfs(K).

We note that any bounded domain D such as that in
Fig. 1 with a component in D\B2α in which the distance
from every point in the component is at most α+β has
a boundary with reach at most α + β. Moreover, in
the figures of 2 there exist points in D \ B2α and D
contained in distinct components within distance 2α of
each other, respectively. It follows that the minimum
distance to a critical point of B, a point which lies in
the convex hull of its nearest neighbors in B, is at most

2α. Conversely, for any D such that the reach of B
is strictly greater than α + β Assumption 2 is implied.
Assumption 3 is implied for any bounded domain such
that the weak feature size of its boundary is strictly
greater than 2α. As reach(K) ≤ wfs(K) we therefore
maintain our geometric assumptions for any domain D
with a boundary B such that wfs(B) > α+ β ≥ 4α.

Relationship to the de Silva & Ghrist TCC For the
sake of contrast, we will state the Topological Coverage
Criterion as states by de Silva & Ghrist in [5]. Here we
will assume points in a fixed point set P in a domain
D ⊂ Rd with boundary B have have uniform coverage
radius rc, fence detection radius (in which nodes can
detect the boundary) rf , and node-detection radii rs ≤√

2rc, rw ≥ rs
√

10. Moreover, we will let Q = {x ∈ P |
d(x,B) ≤ rf} be the subset of P consisting of points
sufficiently close to the boundary B.

Theorem 3 (TCC (de Silva & Ghrist)) Let P be
a fixed set of nodes in a domain D ⊂ Rd with bound-
ary B such that each p ∈ P the restricted domain

D \ Brf+rs/
√
2 is connected and the hypersurface Σ =

{x ∈ D | d(x,B) = rf} has internal injectivity radius
at least rs/

√
2 and external injectivity radius at least

rs. The sensor cover P rc contains D \ Brf+rs/
√
2 if the

homomorphism

ι∗ : Hd(Ripsrs(P ),Ripsrs(Q))→ Hd(Ripsrw(P ),Ripsrw(Q))

induced by the inclusion ι : Ripsrs(P ) ↪→ Ripsrw(P ) is
nonzero.

Figure 3: This instance illustrates the failure of Lemma
3.3 of [5] when the boundary is not smooth. A cycle
that is trivial in the thickened boundary persists. This
highlights the need to work with the relative homology
of the domain modulo the boundary rather than the
homology of the boundary alone. Such a cycle in the
boundary cannot form a relative cycle.

According to [5, Remark 4.5], the smooth manifold
hypothesis is a necessary requirement in order to ap-
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ply the TCC without degenerating constants.1 Because
their analysis involves directly comparing this thickened
region around boundary to this complex it was neces-
sary to show that the thickness of this region is such
that any topological noise in the complex is eliminated
with inclusion from scale α to β. This amounts to prov-
ing that that cycles lying entirely in a thickening of the
boundary of the domain cannot persist in the TCC, as
in [5, Lemma 3.3]. Such a case is shown in Fig. 3, illus-
trating a domain without a smooth boundary in which
the thickened boundary contains a cycle that persists
across a range of scales. This is to be contrasted with
our Lemma 5, requiring Assumptions 1 and 2, in which
the persistence of this cycle does not indicate the per-
sistence of a relative cycle. For example, although the
domain in Fig. 3 clearly does not have a smooth bound-
ary it does have weak feature size greater than α + β,
and therefore satisfies our geometric conditions. It is in
this sense that Assumptions 2 and 3 serve to weaken the
smoothness hypothesis in order to allow the TCC to be
applied to domains, such as those with bounded weak
feature size, which imply our minimal hypothesis.

4 The Generalized Topological Coverage Criterion

Consider a domain D ⊂ Rd, its boundary B, and con-
stants α and β such that 0 ≤ 3α ≤ β satisfying Assump-
tions 1–3. Given a weighted finite point set P ⊆ D
we will give a sufficient condition to guarantee the k-
coverage of a shrunken domain D \ B2α, where the k-
covered region corresponds to the weighted offsets Pαk
as defined by dk. We define Q := P ∩ Bα, i.e. the sub-
sample of P that is within distance α of the boundary.

Lemma 4 allows us to talk about the homology of
the shrunken boundary in terms of relative homology
where A := (Rd ∪∞) \ A denotes the complement of
A in the compactification of Rd homeomorphic to the
d-sphere Sd.

Lemma 4 For all ε > 0, H0(D \ Bε) ∼= H0(Bε,Dε).

Proof. Consider the inclusion (D \ Bε, ∅) ↪→ (Bε,Dε)
and the corresponding map H0((D\Bε, ∅) ↪→ (Bε,Dε)).
For injectivity, given some non-trivial 0-chain [x] ∈
H0(D \ Bε), we can pick a representative point x ∈
D \ Bε ⊆ Bε. Given that B is the boundary of D,
a dimension-n space, then there exists no paths from
D \ Bε to B, so [x] 6= 0 ∈ H0(Bε,Dε). For surjectivity,
given some [x] ∈ H0(Bε,Dε), it represents a point on a
connected component on Bε \ Dε = D \ Bε, and thus a
homology class [x] ∈ H0(D \ Bε). �

1 [5, Remark 4.5] states that, although domains with a polyg-
onal boundary are admissible in practice, the constant rw would
blow up along with the angle of the sharpest corner of the outer-
most boundary component.

We will assume non-negative weights wx ≥ 0 assigned
to each x ∈ P , and that wx = 0 for all points x ∈ D\P .
This implies that Dεk = Dε, and similarly Bεk = Dε,
so we will simply use the notation Dε and Bε through-
out. Moreover, we know that Pαk ⊆ Dαk = Dα by the
monotonicity of dk. For any arbitrary weighted com-
pact set A ⊆ D, Aεk ⊆ Aε1 ⊆ Aε and Q ⊆ Bα, for ε ≥ 0,
Qεk ⊆ Qε ⊆ Bα+ε.

Diagram (3) relates the connected components of the
pairs, and induces the map π∗ : im j∗ → im i∗.

H0(Bα+β ,Dα+β)
j∗ //

��

H0(B2α,D2α)

��
H0(Qβk , P

β
k )

i∗ // H0(Qαk , P
α
k )

(3)

Though reversed and inverted by the dualities, this map
describes the topology of the offsets embedded into the
domain, where the scale change eliminates noise. That
is, it captures exactly the topological information we
want. Analyzing π∗ directly simplifies the proof and
aids in eliminating some hypotheses.

The following two lemmas prove two important prop-
erties of π∗. These will be used to give a computable
way to infer coverage from the rank of i∗.

Lemma 5 Given Assumptions 1 and 2, the map π∗ is
surjective.

Proof. Assumption 2 implies that j∗ is surjective by
Alexander Duality. We choose a basis for im i∗ such
that each basis element is a point in Pαk \Q

β
k . Consider

x ∈ Pαk \Q
β
k such that [x] 6= 0 ∈ im i∗. If x ∈ B2α, then

x ∈ D \ B2α so [x] 6= 0 ∈ H0(B2α,D2α). Because j∗ is
surjective, H0(B2α,D2α) = im j∗ and thus π∗([x]) = [x]
and so [x] ∈ im π∗.

If x ∈ B2α, then there is a point y ∈ B such that ‖x−
y‖ ≤ 2α. Because x ∈ Qβk by hypothesis, dk(x,Q) > β.
We will show that if a point z is in the line segment
xy, then z ∈ Qαk . For any z ∈ xy, we have ‖x − z‖ ≤
‖x− y‖ ≤ 2α. So,

dk(z,Q) ≥ dk(x,Q)− ‖x− z‖ [dk is Lipschitz]

> β − 2α [dk(x,Q) > β and ‖x− z‖ ≤ 2α]

≥ α [β ≥ 3α]

So, we conclude that z ∈ Qαk , and thus xy ⊆ Qαk .
The definition of Q implies that B∩Qαk ⊆ Pαk , and so

y ∈ Pαk . Any path γ : [0, 1] → Qαk such that γ(0) = x
and γ(1) = y, generates a class [γ] in the chain group
C1(Qαk ) containing γ. For [γ] ∈ C1(Qαk, P

α
k ) it follows

∂([γ]) = [x + y] = [x] as y ∈ Pαk , and therefore that
there must exist z ∈ xy∩Qαk . This is a contradiction as
we have shown that xy ∩Qαk = ∅, and thus we conclude
x cannot be in B2α. �



CG:YRF, Boston, MA, USA, June 14-18, 2016

The following lemma therefore allows us to confirm
coverage by comparing the ranks of im i∗ and im j∗.

Lemma 6 Given Assumption 1, if π∗ is injective then
D \ B2α ⊆ Pαk .

Proof. The proof is essentially the same as that pre-
sented by de Silva & Ghrist [5]. We include it here in
our own notation for completeness.

We will prove this by contradiction. Assume there ex-
ists x ∈ (D\B2α)\Pαk ,and thus [x] 6= 0 ∈ H0(B2α,D2α).
This is true because as we know that x is in the inte-
rior of D, so it is on a connected component of D \B2α.
Consider the following sequence:

H0(B2α,D2α)
f∗−→ H0(B2α,D2α ∪ {x}) g∗−→ H0(Qαk , P

α
k )

As f∗([x]) = 0 ∈ H0(B2α,D2α ∪ {x}), then (g∗ ◦
f∗)([x]) = 0. But we have a contradiction as g∗◦f∗ = π∗,
and π∗([x]) 6= 0 by injectivity, so D \ B2α ⊆ Pαk . �

As Lemma 5 asserts that π∗ is surjective under our
assumptions, Lemma 6 can therefore be used to con-
firm coverage by providing conditions in which π∗ is in-
jective. Thus, the following theorem provides sufficient
conditions to confirm D \ B2α ⊆ Pαk . Note that it will
not yet give us an algorithm (that will come in The-
orem 10), but instead gives a result about the offsets
directly rather than an embedding of a Rips complex as
was used in previous work.

Theorem 7 (Geometric TCC) Consider D ⊂ Rd
with boundary B satisfying Assumptions 1 and 2. Let α
and β be constants such that 0 < 3α ≤ β. Let P ⊂ D be
a finite set with Q = P ∩Bα. Let i∗ and j∗ be the maps
in Diagram (3). If rk i∗ ≥ rk j∗ then D \ B2α ⊆ Pαk .

Proof. Given Assumptions 1 and 2, Lemma 5 im-
plies that π∗ : im j∗ → im i∗ is surjective, and so
rk i∗ ≤ rk j∗. By hypothesis, rk i∗ ≥ rk j∗, so it
follows that rk i∗ = rk j∗. Because both the images are
finite-dimensional, π∗ is an isomorphism, and therefore
it is injective. Lemma 6 then implies D\B2α ⊆ Pαk . �

5 Computing the TCC

In the previous section we prove sufficient conditions
for generalized coverage in terms of the offsets of the
input points. However, we may not be able to compute
these offsets, because we do not know the positions of
the points in P . Instead, we use Rips complexes in the
algorithm.

Let Ripsβ(X) and Čechβ(X) denote respectively

the Rips and Čech complexes of a set X at scale
β. Let Rkβ be the pair of k-barycentric Rips com-

plexes (Ripskβ(P ),Ripskβ(Q)) and let Ckβ be the pair

of k-barycentric Čech complexes (Čech
k

β(P ), Čech
k

β(Q))
as defined in Section 2. If k = 1 and P is un-
weighted we define the standard Rips and Čech com-
plex pairs R1

β := (Ripsβ(P ),Ripsβ(Q)) and C1
β :=

(Čechβ(P ), Čechβ(Q)).
Algorithm 1 is for checking k-coverage of the shrunken

domain by a weighted sample P , i.e. that D\B2α ⊆ Pαk .
The algorithm requires that the point samples each of
the connected components of D\B2α. It first constructs
three Rips complexes based on the input parameters
(α, β, P,Q, k): Ripsα(P ), Rkα/ϑd

and Rkβ . It then checks
a condition relating the homology of the complexes, and
if it satisfied, k-coverage is guaranteed. Note that if the
algorithm’s output is false it does not necessarily mean
there is not coverage. Lemma 8, Lemma 9 and Theo-

Algorithm 1 Check if D \B2α ⊆ Pαk
1: procedure k-Coverage(α, β, P,Q, k)
2: construct Ripsα(P )
3: let c := dim H0(Ripsα(P ))
4: construct Rkα/ϑd

and Rkβ
5: let r := rk Hd(R

k
α/ϑd

↪→ Rkβ)
6: if c = r then return True
7: else return False

rem 10 together provide a proof of correctness of Algo-
rithm 1. Lemma 8 bounds the rank of the map between
the Rips complexes at different scales by rk i∗, in order
to compare it to rank j∗ through Theorem 7. Lemma 9
states that if the components are separated enough, for-
mally defined in Assumption 3, then the number of con-
nected components of the Rips complex at scale α of P
provides an upper bound for the number of components
of D \ B2α.

Lemma 8 The rank of the map Hd(R
k
α/ϑd

↪→ Rkβ) in-
duced by inclusion is at most rk i∗.

Proof. For the case of k = 1, the Persistent Nerve
Lemma [4] says that for ε ≥ 0, H∗(C

1
ε ) ∼= H∗(P

ε
1 , Q

ε
1).

The Universal Coefficient Theorem with respect to Dia-
gram (3) implies that rk(Hd(C

1
α ↪→ C1

β)) = rk i∗. More-

over, the inclusion R1
α/ϑd

↪→ R1
β can be factored as

R1
α/ϑd

↪→ C1
α ↪→ C1

β ↪→ R1
β .

It follows that

rk(Hd(R
1
α/ϑd

)→ Hd(R
1
β)) ≤ rk(Hd(C

1
α)→ Hd(C

1
β)) = rk i∗.

For k ≥ 2, Theorem 2 states that
(Ripskε(P ),Ripskε(Q)) is a ϑd-approximation to
(P εk , Q

ε
k). This implies that H∗(R

k
ε/ϑd

) ∼= H∗(P
ε
k , Q

ε
k),

so the previous argument naturally follows for these
cases as well. �
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Lemma 9 Given P has at least one point on each con-
nected component of D \ B2α, if Assumptions 1 and 3
are satisfied then the number of connected components
of Ripsα(P ) is greater than or equal to the number of
connected components of D \ B2α.

Proof. Assume there exists p, q ∈ P such that p and
q are connected in Ripsα(P ), but not in D \ B2α. This
implies that ‖p− q‖ ≤ 2α and [p] 6= [q] in H0(D \ B2α).
However, pq ∈ D2α as the distance between p and q is
less than 2α, so [p] = [q] in H0(D2α), which implies that
H0(D \ B2α ↪→ D2α) is not injective, a contradiction to
Assumption 3. �

Theorem 10 (Algorithmic TCC) Consider a do-
main D ⊂ Rd with boundary B and constants α, β,
where 0 ≤ 3α ≤ β, satisfying Assumptions 1, 2 and 3.
Let P ⊂ D be a finite point sample, |P | ≥ max{k,m},
where m = H0(D\B2α), such that there is a point p ∈ P
in each of the m connected components of D \ B2α.
If rk Hd(R

k
α/ϑd

↪→ Rkβ) = dim H0(Ripsα(P )), then

D \ B2α ⊆ Pαk .

Proof. For simplicity, define a∗ := Hd(R
k
α/ϑd

↪→ Rkβ)

and set c = dim H0(Ripsα(P )). By our hypothesis and
Lemma 8, rk i∗ ≥ rk a∗ = c. By Lemma 9, c ≥ m, and
Assumption 2 implies that j∗ is surjective by Alexander
duality, so m = rk j∗. Thus rk i∗ ≥ rk a∗ = c ≥ m =
rk j∗, namely rk i∗ ≥ rk j∗, so by Theorem 7 we can
conclude D \ B2α ⊆ Pα. �

From this algorithm we can see that, even if we do not
know the number of connected components of D0, as
long as we know which components have been sampled
we can provide a condition to certify coverage of the
subdomain that P has been sampled from.

6 Conclusion

The TCC gives an effective algorithm for certifying cov-
erage of coordinate-free sensors in an unknown domain.
In this paper, we generalized the TCC to certify cover-
age in spaces whose boundaries may not be smooth. We
replaced the smoothness assumption with much weaker
conditions, that the domain is non-degenerate in some
sense (Assumption 1), that the components are not too
small (Assumption 2), and that the components are not
to close (Assumption 3).

Although the language of homological sensor net-
works might imply that the application is restricted to
sensors, we hope that the more general geometric condi-
tions provided in this paper will lead to applications in
data analysis. Specifically, eliminating the smoothness
assumption should make this approach amenable to real
data problems.
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