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1 Introduction

A nerve is a simplicial complex derived from a cover of a
topological space. Nerves appear all over computational
topology and geometry, e.g. a Delauney triangulation
is the nerve of a Voronoi diagram and the Čech com-
plex is the nerve of a collection of metric balls. They
are used to solve problems concerning surface recon-
struction, homology inference, and homological sensor
networks, among other areas.

If one has an open cover of a paracompact space in
which all non-empty intersections of the cover elements
are contractible, i.e. it is a good cover, then its nerve
is homotopy equivalent to the covered space. This re-
sult is known as the Nerve Theorem. It has a natural
extension to the setting of persistent homology called
the Persistent Nerve Lemma (PNL), due to Chazal and
Oudot [2]. The PNL implies that given a filtration of
covers of a filtration of spaces such that at each time the
cover is good, then the persistent homology of the space
filtration is that of the nerve filtration. Good covers are
not always an option, e.g. if a metric space is not con-
vex then the metric balls of a finite point sample may
cover the space, but they won’t be a good cover without
adding other conditions. The requirement of having a
good cover in order to invoke the PNL is the motivation
for our work – instead we assume the cover elements’
homology is trivial when included into a later scale.

Recently, Botnan and Spreemann assumed an inter-
leaving between two cover filtrations to prove a bound
on the bottleneck distance between the persistence dia-
grams of their nerve filtrations [1]. Govc and Skraba [3]
considered a simplicial filtration and a cover of the ter-
minal complex, using it to construct a cover filtration by
taking the intersection of the cover with the simplicial
filtration at each scale. They assumed that the persis-
tence modules of all the non-empty k-wise intersections
of the filtration’s cover elements were ε-interleaved with
0 and proved a tight bound on the bottleneck distance
between the persistence diagrams of the filtered simpli-
cial complex and the nerve filtration, linear with respect
to dimension and ε.

We consider a more general cover assumption—that
we have an arbitrary cover filtration consisting of sim-
plicial complexes which collectively cover a filtered sim-

Figure 1: A bump in R3 and subsets with non-
contractible intersection.

plicial complex, rather than a cover filtration induced by
intersection like Govc and Skraba. We also assume the
cover filtration is what we define as ε-good. The major
contributions are that there are interleavings between
the filtered simplicial complex and the nerve filtration’s
homology groups, induced by chain maps, which imply a
tight dimension-dependent bound on the bottleneck dis-
tance between the two persistence diagrams, linear with
respect to dimension and ε. A noteworthy corollary of
our result is the Persistent Nerve Lemma by considering
a 0-good cover.

2 Background

Let U := {U1, . . . , Un} be an arbitrary collection of
filtrations, growing sequences of spaces, where Ui :=
(Uαi )α≥0, and each Uαi is a simplicial complex. We
call U a cover filtration. For each α ≥ 0, define
Uα := {Uα1 , . . . , Uαn } and Wα :=

⋃
i∈[n] U

α
i . For each

non-empty v ⊆ [n] = {1, . . . , n}, let Uαv :=
⋂
i∈v U

α
i .

The nerve of the cover Uα is defined as Nrv Uα :=
{v ⊆ [n] | Uαv 6= ∅}. One can check this is a
simplicial complex. The nerve filtration is defined as
Nrv U := (Nrv Uα)α≥0. When we consider the collec-
tion of spaces that each Uα covers over all α ≥ 0, we
get the union filtration, W := (Wα)α≥0. Uα is a good
cover of Wα if for all subsets v ⊆ [n], we have Uαv is
empty or contractible. For filtrations, we say U is a
good cover of W if Uα is a good cover of Wα for all
α ≥ 0. The Persistent Nerve Lemma implies that if
U is a good cover of W, then Dgm(Nrv U) = Dgm(W),
where Dgm(·) is the persistence diagram over all dimen-
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Figure 2: A cover filtration that is not good, but is
1-good.

sions of the input filtration– a multiset representing the
“birth” and “deaths” of homological features as α→∞.
When we refer to the persistence diagram of just the k-
dimensional homological features we will write Dgmk(·).

Given a cover filtration U , we say it is ε-good if for
all non-empty v ⊆ [n], and for all α ≥ 0, H̃∗(U

α
v ↪→

Uα+εv ) = 0, so any nontrivial homology classes of Uαv
are trivial when mapped into Uα+εv . Note that due to
the definition of contractibility, U being a good cover of
W implies that it is 0-good.

For each Uα there is a corresponding commutative di-
agram DUα, where the spaces are the non-empty sets
Uαv for non-empty v ⊆ [n] and there is an inclusion map
Uαv ↪→ Uαv′ whenever v′ ⊂ v. Let Nα be the barycen-
tric subdivision of Nrv Uα which has simplices of the
form σ = v0 → . . . → vk, where vi ⊂ vi+1, and each
vi corresponds to a simplex of Nrv Uα. This is an ab-
stract simplicial complex and we denote the associated
geometric filtration as N := (|Nα|)α≥0. We define the
homotopy colimit of DUα as

hocolim DUα :=
⋃

Nα3σ=v0→...
Uαv0 × |σ|,

where | · | is the geometric realization functor. This
homotopy colimit is also known as the Meyer-Vietoris
blowup complex [4]. It yields another filtration, B =
(Bα)α≥0, where Bα = hocolim DUα.

We note that there is a (pseudo)-metric between two
persistence diagrams D and D′ called the bottleneck dis-
tance, denoted dB(D,D′), which is the standard mea-
sure of the similarity of two persistence diagrams, and
with that, the persistent homology of two filtrations.

3 Results

Theorem 1 If U = {U1, . . . , Un} is a set of simplicial
filtrations that is an ε-good cover of the simplicial fil-
tration W =

⋃n
i=1 Ui, then

dB(Dgmk(W),Dgmk(Nrv U)) ≤ (k + 1)ε

2
.

Furthermore, there is an upper-bound of (D+1)ε
2 , where

D is the dimension of the nerve filtration.

An overview of the proof is as follows. As for all
α, Bα ⊆ Wα × |Nα|, we have natural chain maps
induced by projection bα : C∗(B

α) → C∗(W
α) and

pα : C∗(B
α)→ C∗(|Nα|), where bα at the space level is

a homotopy equivalence, so Dgm(W) = Dgm(B).
Since |Nα| is homeomorphic to |Nrv Uα|, it follows

that Dgm(N ) = Dgm(|Nrv U|), and as simplicial ho-
mology is equivalent to singular homology, we have that
Dgm(N ) = Dgm(Nrv U). Define t := (k + 1)ε, where
k is the maximal dimension of homology groups being
considered. We create a chain map qα : C∗(|Nα|) →
C∗(W

α+t) such that aα := qα ◦ pα is chain homotopic
to iα,α+tB ◦ bα, via chain homotopy cα : C∗(|Nα|) →
C∗(W

α+t). These maps can be viewed in diagram 1.

Ck(Wα)
iα,α+t
W // Ck(Wα+t)

Ck(Bα)
iα,α+t
B

//

bα

OO

pα

��

Ck(Bα+t)

pα+t

��

bα+t

OO

Ck(|Nα|)

qα

@@

iα,α+t
N // Ck(|Nα+t|)

(1)

We use qα to define a chain map q̄α : C∗(|Nα|) →

C∗(B
α+t), where q̄α(σ) :=

k∑
i=0

q(σi) ⊗ σ̄i, with σi :=

v0 → . . . → vi and σ̄i := vi → . . . → vk, such that
pα+t ◦ q̄α commutes with iα,α+tN and q̄α ◦ pα is chain

homotopic to iα,α+tB , via chain homotopy c̄α, defined
analogously to q̄α.

By applying the homology functor to the diagram at
all α, the chain maps pα and q̄α commute with all the
inclusion homomorphisms, forming interleaving homo-
morphisms between N and B thus implying our result.
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