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Introduction. The nerve of a cover is a sim-
plicial complex corresponding to the collection
of intersections of a cover of a nice topological
space. Nerves show up all over computational
geometry and topology as they provide a dis-
crete representation of a continuous space. In
fact if one has a good cover of a space, then the
nerve has the same homotopy type, and thus ho-
mology, as the space. Nerves are used in surface
reconstruction, homology inference, and homo-
logical sensor networks.

The Persistent Nerve Lemma, introduced by
Chazal and Oudut [2], implies that given a grow-
ing collection of covers, e.g. convex sets, of suffi-
ciently nice growing topological spaces, the per-
sistent homology of the spaces they cover is the
same as that of the nerve of the covers, and
furthermore, the maps between the spaces com-
mute. This result has played a big part in the
results on persistent homology and topological
data analysis. The hypothesis of the lemma is
the covers have contractible intersections.

Other researchers have worked within this set-
ting altering the original assumption of good cov-
ers. Botnan and Spreemann [1] assumed knowl-
edge of the interleaving between two cover fil-
trations to bound the bottleneck distance be-
tween the persistence diagrams of the filtrations
of the nerves and the spaces. Govc and Skraba
[3] bounded the bottleneck distance between the
nerve and space persistence diagrams for simpli-
cial complexes, given that the homology of the
k-intersections of the filtrations cover elements
are e-interleaved with 0, where the cover filtra-
tion is defined by the cover’s intersection with
each step in the filtered simplicial complex.

We consider a more general cover assumption—
that we have an arbitrary cover filtration of a
simplicial filtration where the inclusion of any
intersection of covers included into the next has
the homology of a point. Our main result is that

there is an interleaving between the space and
nerve filtrations’ homology groups which implies
a dimension-dependent bound on the bottleneck
distance between their two persistence modules
and this bound is tight.

Background. Let U = {Uy,...,U,} be a set
of filtrations, where U; = (U{)a>0. For each
a > 0, we denote U* = {Uy,...,US}, and we
note this is a cover of the space W< = Uie[n] Uy,
a simplicial complex. For v C [n], let U =
Nic, U So Uy, = (U )ax0 is also a filtration.

The nerve of a collection of sets U is defined
as Nerve U := {v C [n] | UY # 0} and is a sim-
plicial complex. The nerve filtration is defined
as Nerve U := (Nerve U*)o>0 When we consider
the collection of spaces that each U“ covers, we
get the union filtration, W = (W%)a>0. The
sets of U™ form a good cover of W< if for all sub-
sets v C [n], we have U is empty or contractible.
For filtrations, we say U is good cover of W if U®
is a good cover of W% for all & > 0. The Per-
sistent Nerve Lemma implies that if ¢/ is a good
cover of W, then Pers(Nerve U) = Pers(W).

We now will define the structure that will pro-
vide the link between the nerve filtration and the
union filtration. From U%, there is a correspond-
ing commutative diagram DU®, where the spaces
are the nonempty sets U for v C [n] and there is
an inclusion map Uy < Uy, whenever v1 C vp.
Let Flag(n)® be the set of ordered sequences of
the form o = (vo,...,vx), k < n, where v; C [n].
This can be interpreted as an ordering on the
barycentric decomposition of Nerve <. This is
an abstract simplicial complex. We define the
homotopy colimit of DU as

U

o€Flag(n)«

hocolim DU® := UQ% X 0.

The homotopy colimit yields another filtration,
B = (B*)a>0, where B* = hocolim DU“. Note
that hocolim DU* C W x Flag(n)®, and thus
there are natural projections into W and Nerve U“
from B® for each a. The projection map b* :
B — W% is a homotopy equivalence for any
cover of a paracompact space e.g. simplicial com-
plexes, and by its naturality, we have Pers(B)



. a+1
{1 2}

a+2
{1 2}
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FI1GURE 1. A cover filtration that
is not good, but is 2-good.

Pers(W). hocolim DU® is also know as the Mayer-
Vietoris blowup complex.

Results. We do not assume that the cover is
good. Rather, given a cover U, we say it is e-
good if for all v C [n], and for all & > 0, the
inclusions US < U2 have the homology of a
point, so any nontrivial topology of Uy dies at
U2, Note that when € = 0, we have the exact
hypothesis of the Persistent Nerve Lemma. Our
main result is the following.

Theorem 1. If U = {Uy,...,U,} is a set of
filtrations that is an e-good cover of the simplicial
filtration W = \J;_, U;, then

dp(Pers, (W), Pers,(Nerve U)) < (r+ 1)e.

Thus the bottleneck distance of the persis-
tence diagrams for the r-th persistent homology
of the simplicial filtration and the nerve filtration
is bounded above (r+1)e. Furthermore, the bot-
tleneck distance is upper-bounded by (D + 1)e,
where D is the maximal dimension of the nerve.

An overview of the proof is as follows. One
has the equality Pers(W) = Pers(B), and thus
one must find an interleaving between the chains
of N* and B® to prove the theorem, where N is
the barycentric subdivision of Nerve U¢. Define
N = (N%)a>0. Since N® is homeomorphic to
Nerve U%, for all «, it follows that Pers(N)
Pers(Nerve U). For each vertex v of N, there is
a corresponding nonempty set UJ'. There exists
a projection p® : B* — N® which we use to
define a map ¢* from N¢ to Bt where t is a
function of €, such that p®** o g® commutes with
N® < N°*tt and @* o p® is chain homotopic to
the inclusion b : B® « B¥*t,

We use the following notation, in relation to
(vo, ..., v), a k-simplex of N*. Let o; =
Vo, ..., 0;) and 7; = (vg,. .., Vk).

By our e-goodness assumption we have maps
on the chains ¢, : Cx(US) — Ciyr1(U2TE) that
are chain homotopies between the identity map
and the map to a fixed point x,. By composition,
we obtain a map for all £ > 0, ¢*: C : (BY) —
Ci1 (Wt where t = (k+1)e. This maps acts
on 7 X o € Cy(BY), as follows.

(Cop 0+ 0 ey ) (7).
We now define the map ¢%(o) := ¢“(xy, X 71).
Composing the aforementioned we get a map
® = g%op*: Cu(B*) — C(Wo), and we
have that ¢® is a chain homotopy between a®
and b®. The key ingredient to this instruction is
that given a chain map f : C\,(B%) — C (W),
we can "lift” this to a chain map f : Cx(B%) —
Ci(B>tt) as follows.

(T xo0):=

f(r xo):= g f(r x 0;) x 7;.

This lifting operation also preserves chain homo-
topies on the new spaces. Thus we have a chain
homotopy & between a® and b®. By defining a
lift of ¢ as ¢*(o) : Zf:o q“(oi) X 74, we get
our desired maps. Note that in the construction,

= (k + 1)e, leading to the bound in the main
theorem.

Since the maps a® and p® o ¢ are natural by
construction, they commute with the shift ho-
momorphisms at the homology level, and thus
induce the interleaving homomorphisms between
N and B, implying our result.
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