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Introduction. The nerve of a cover is a sim-
plicial complex corresponding to the collection
of intersections of a cover of a nice topological
space. Nerves show up all over computational
geometry and topology as they provide a dis-
crete representation of a continuous space. In
fact if one has a good cover of a space, then the
nerve has the same homotopy type, and thus ho-
mology, as the space. Nerves are used in surface
reconstruction, homology inference, and homo-
logical sensor networks.

The Persistent Nerve Lemma, introduced by
Chazal and Oudut [2], implies that given a grow-
ing collection of covers, e.g. convex sets, of suffi-
ciently nice growing topological spaces, the per-
sistent homology of the spaces they cover is the
same as that of the nerve of the covers, and
furthermore, the maps between the spaces com-
mute. This result has played a big part in the
results on persistent homology and topological
data analysis. The hypothesis of the lemma is
the covers have contractible intersections.

Other researchers have worked within this set-
ting altering the original assumption of good cov-
ers. Botnan and Spreemann [1] assumed knowl-
edge of the interleaving between two cover fil-
trations to bound the bottleneck distance be-
tween the persistence diagrams of the filtrations
of the nerves and the spaces. Govc and Skraba
[3] bounded the bottleneck distance between the
nerve and space persistence diagrams for simpli-
cial complexes, given that the homology of the
k-intersections of the filtrations cover elements
are ε-interleaved with 0, where the cover filtra-
tion is defined by the cover’s intersection with
each step in the filtered simplicial complex.

We consider a more general cover assumption—
that we have an arbitrary cover filtration of a
simplicial filtration where the inclusion of any
intersection of covers included into the next has
the homology of a point. Our main result is that

there is an interleaving between the space and
nerve filtrations’ homology groups which implies
a dimension-dependent bound on the bottleneck
distance between their two persistence modules
and this bound is tight.

Background. Let U = {U1, . . . , Un} be a set
of filtrations, where Ui = (Uαi )α≥0. For each
α ≥ 0, we denote Uα = {Uα1 , . . . , Uαn }, and we
note this is a cover of the space Wα =

⋃
i∈[n] U

α
i ,

a simplicial complex. For v ⊆ [n], let Uαv =⋂
i∈v U

α
i . So Uv = (Uαv )α≥0 is also a filtration.

The nerve of a collection of sets Uα is defined
as Nerve Uα := {v ⊆ [n] | Uαv 6= ∅} and is a sim-
plicial complex. The nerve filtration is defined
as Nerve U := (Nerve Uα)α≥0 When we consider
the collection of spaces that each Uα covers, we
get the union filtration, W := (Wα)α≥0. The
sets of Uα form a good cover of Wα if for all sub-
sets v ⊆ [n], we have Uαv is empty or contractible.
For filtrations, we say U is good cover ofW if Uα
is a good cover of Wα for all α ≥ 0. The Per-
sistent Nerve Lemma implies that if U is a good
cover of W, then Pers(Nerve U) = Pers(W).

We now will define the structure that will pro-
vide the link between the nerve filtration and the
union filtration. From Uα, there is a correspond-
ing commutative diagramDUα, where the spaces
are the nonempty sets Uαv for v ⊆ [n] and there is
an inclusion map Uαv0 ↪→ Uαv1 whenever v1 ⊂ v0.
Let Flag(n)α be the set of ordered sequences of
the form σ = (v0, . . . , vk), k ≤ n, where vi ⊆ [n].
This can be interpreted as an ordering on the
barycentric decomposition of Nerve Uα. This is
an abstract simplicial complex. We define the
homotopy colimit of DUα as

hocolim DUα :=
⋃

σ∈Flag(n)α
Uαv0 × σ.

The homotopy colimit yields another filtration,
B = (Bα)α≥0, where Bα = hocolim DUα. Note
that hocolim DUα ⊆ Wα × Flag(n)α, and thus
there are natural projections intoWα and Nerve Uα
from Bα for each α. The projection map bα :
Bα → Wα is a homotopy equivalence for any
cover of a paracompact space e.g. simplicial com-
plexes, and by its naturality, we have Pers(B) =



Figure 1. A cover filtration that
is not good, but is 2-good.

Pers(W). hocolimDUα is also know as the Mayer-
Vietoris blowup complex.

Results. We do not assume that the cover is
good. Rather, given a cover U , we say it is ε-
good if for all v ⊆ [n], and for all α ≥ 0, the
inclusions Uαv ↪→ Uα+εv have the homology of a
point, so any nontrivial topology of Uαv dies at
Uα+εv . Note that when ε = 0, we have the exact
hypothesis of the Persistent Nerve Lemma. Our
main result is the following.

Theorem 1. If U = {U1, . . . , Un} is a set of
filtrations that is an ε-good cover of the simplicial
filtration W =

⋃n
i=1 Ui, then

dB(Persr(W),Persr(Nerve U)) ≤ (r + 1)ε.

Thus the bottleneck distance of the persis-
tence diagrams for the r-th persistent homology
of the simplicial filtration and the nerve filtration
is bounded above (r+1)ε. Furthermore, the bot-
tleneck distance is upper-bounded by (D + 1)ε,
where D is the maximal dimension of the nerve.

An overview of the proof is as follows. One
has the equality Pers(W) = Pers(B), and thus
one must find an interleaving between the chains
of Nα and Bα to prove the theorem, where Nα is
the barycentric subdivision of Nerve Uα. Define
N = (Nα)α≥0. Since Nα is homeomorphic to
Nerve Uα, for all α, it follows that Pers(N ) =
Pers(Nerve U). For each vertex v of Nα, there is
a corresponding nonempty set Uαv . There exists
a projection pα : Bα → Nα, which we use to
define a map q̄α from Nα to Bα+t, where t is a
function of ε, such that pα+t ◦ q̄α commutes with
Nα ↪→ Nα+t and q̄α ◦ pα is chain homotopic to
the inclusion bα : Bα ↪→ Bα+t.

We use the following notation, in relation to
σ = (v0, . . . , vk), a k-simplex of Nα. Let σi =
(v0, . . . , vi) and σ̄i = (vi, . . . , vk).

By our ε-goodness assumption we have maps
on the chains cv : C∗(U

α
v ) → C∗+1(U

α+ε
v ) that

are chain homotopies between the identity map
and the map to a fixed point xv. By composition,
we obtain a map for all k ≥ 0, cα : Ck : (Bα)→
Ck+1(W

α+t), where t = (k+1)ε. This maps acts
on τ × σ ∈ C∗(Bα), as follows.

cα(τ × σ) := (cvk ◦ . . . ◦ cv0)(τ).

We now define the map qα(σ) := cα(xv0 × σ̄1).
Composing the aforementioned we get a map

aα = qα ◦ pα : C∗(B
α) → C∗(W

α+t), and we
have that cα is a chain homotopy between aα

and bα. The key ingredient to this instruction is
that given a chain map f : C∗(B

α)→ C∗(W
α+t),

we can ”lift” this to a chain map f̄ : C∗(B
α) →

C∗(B
α+t) as follows.

f̄(τ × σ) :=
k∑
i=0

f(τ × σi)× σ̄i.

This lifting operation also preserves chain homo-
topies on the new spaces. Thus we have a chain
homotopy c̄α between āα and b̄α. By defining a

lift of qα as q̄α(σ) :=
∑k

i=0 q
α(σi) × σ̄i, we get

our desired maps. Note that in the construction,
t = (k + 1)ε, leading to the bound in the main
theorem.

Since the maps āα and pα ◦ q̄α are natural by
construction, they commute with the shift ho-
momorphisms at the homology level, and thus
induce the interleaving homomorphisms between
N and B, implying our result.

References

[1] Magnus Bakke Botnan and Gard Spreemann. Ap-
proximating persistent homology in Euclidean space
through collapses. Applicable Algebra in Engineering,
Communication and Computing, pages 1–29, 2015.

[2] Frédéric Chazal and Steve Yann Oudot. Towards
persistence-based reconstruction in euclidean spaces.
In Proceedings of the Twenty-fourth Annual Sympo-
sium on Computational Geometry, SCG ’08, pages
232–241, New York, NY, USA, 2008. ACM.

[3] Dejan Govc and Primoz Skraba. An
approximate nerve theorem. arXiv,
https://arxiv.org/pdf/1608.06956v2.pdf, 2016.


