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While computational topology enjoys 
considerable contemporary promi-

nence, it is certainly not an overnight suc-
cess story. The field’s prosperity relies 
heavily upon classical foundations from 
general, geometric, algebraic, and low-
dimensional topology. Here we explore 
applications that range from manifolds for 
airfoils to molecules for pharmaceuticals.

Introduction, History, and Manifolds
The first usage of the term computational 

topology likely occurred within a 1983 doc-
toral dissertation on computer aided geo-
metric design (CAGD) [10]. Two decades 
later, pioneers in topological data analysis 
(TDA) greatly popularized the term [5, 7]. 
This article emphasizes geometric topol-
ogy for analysis of point clouds, suggesting 
promise for the integration of CAGD and 
TDA techniques under the broad abstrac-
tions of applied topology [8].

Within geometric design, boundary sur-
faces of solids frequently form from the 
intersection of two surfaces, which then 
join along this intersection (see Figure 1a). 
Practical complications arise, as numeri-
cal computations yield deviations from 
this abstract theory [9]. Researchers often 
assume that the intersected surfaces are 
manifolds, so algorithmic detection of self-
intersections is an important focus [2]. 
Figure 1b depicts numerical errors between 
two manifolds that are joined along their 
intersection curves [4]. We model the sur-
faces as splines and compute two pre-
images of the intersection curve (one in 
each surface’s parametric domain); these 
actions lead to the indicated numerical dif-
ferences since the curves are instantiated on 
each surface. Considerations in aeronautical 
design and engineering for modeling fuse-
lages and wings inspired Figure 1.

CAGD’s success revolutionized engi-
neering design and manufacturing. 
Boundary representation (B-rep) models 
became a dominant approach to topological 
representations [9, 11], and general topol-
ogy, combinatorial topology, low-dimen-
sional topology, and knot theory for isotopic 
equivalence provided supporting ideas [1]. 
Researchers focused heavily on the adapta-
tion of “pure topology” concepts to finite 
precision data [9, 11].

Computational Topology in Geometric 
Design: Manifolds to Molecules

non-convex, simply connected shape, but 
its skeleton is not homeomorphic to a line 
segment. Chemists visually identified the 
thin bridging (near the center of Figure 4) 
as structurally important.

Researchers developed special purpose 
algorithms to create responsive branched 
skeletons. They first computed discrete 
Laplacians and the Fiedler gap to generate 
clusters in point clouds [3], then connected 
the centroids to form an initial piecewise 
linear (PL) approximation of the skeleton. 
Further refinements extended line segments 
to the extreme points of the topological 
boundaries. Next, scientists calculated the 
skeleton’s total length as a sum of the 
lengths of the segments in the PL skeleton, 
and estimated an average value of the cross-
sectional radius around the skeleton. They 
used these two parameters for computational 
chemical analyses [6], which strongly cor-
roborated postulated theories about micelles.

Concluding Thoughts
Here we share some of topology’s rich 

interaction with geometric modeling and 
design. A similarly robust synergy is simul-
taneously occurring between topology and 
data analysis. The former relies more heav-
ily on geometric and differential topology, 
while the latter depends on algebraic topol-
ogy. As big data is also a prominent com-
ponent of design, we invite read-
ers to consider synergy between 
these two facets of computational 
topology, as expressed here and 
in the January/February 2020 
issue of SIAM News.1
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Data for Molecules
Here we apply geometric topology to 

data pertaining to molecules’ point clouds, 
which we generated from supercomputer 
simulations of dissipative particle dynamics. 
This adaptation of computational topology 
from CAGD to computational chemistry 
and chemical engineering extends the rich 
history of topological modeling in chemis-
try [12]. The corresponding examples are 
micelles, which are optimized for indus-
trial applications of controlled drug release, 
household cleaning products, and friction 

modifiers in vehicle engines [6]. The anno-
tations of Figure 2 distinguish micelles that 
are “approximately convex” from “worms,” 
which are the focus of current research.

While convexity is solely a geomet-
ric property, extraction of the topological 
boundary accelerated the algorithmic iden-
tifications. This was based upon a heuristic 
that any point having six or more adjacent 
points was an interior point (all pairwise 
Euclidean distances were pre-computed, 
with unit distance as the upper bound for 
adjacency since no exterior points existed). 
The approach typically reduced the data 
by an order of magnitude, whereas the 
resulting image is representative of one 
video frame. This data reduction permitted 
algorithmic shape identification to run syn-
chronously with the simulation.

In its simplest form, a worm is like a 
twisted garden hose (see Figure 3). A central 
axis to approximate the length is of particu-
lar interest for chemical analysis. In simpli-
fied worms, one can extract such a skeleton 
with adaptations of the medial axis (MA), 
which is topologically unstable. Empirical 
algorithmic refinements attained topological 
stability for the given data. Piecewise linear 
approximations to the MA were especially 
appropriate, as is also often true in CAGD.

Figure 4 depicts a worm’s additional 
topological complexities. This worm is a 

Figure 1. Surface intersection for boundary. Figure courtesy of Thomas Peters.

Figure 2. Approximations of convexity. Figure courtesy of Michael Johnston and Vassilis Vassiliadis.

Figure 3. Worm. Figure courtesy of Kirk Gardner.

Figure 4. Bridging and branched skeleton. Figure cour-
tesy of Kirk Gardner.


