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Abstract

Existing algorithms for computing the persistent ho-
mology of a set of n points in R

d can take up to nΩ(d)

time and space in the worst case. We apply ideas
from mesh generation to reduce the time to 2O(d)n +
O(n log ∆) and the space to 2O(d)n2, where ∆ denotes
the spread of the point cloud. This makes the prob-
lem of computing the full persistence barcode tractable
for data in (moderate) dimensions higher than 3. Our
technique is based on a new filtration, the α-mesh fil-
tration, that can be intertwined with the offset filtra-
tion and avoids the nO(d) blowup of the α-complex.

1 Introduction

Persistent homology is a powerful tool for understand-
ing the intrinsic structure of a set of data points at
different scales. Unfortunately, existing methods for
computing the persistent homology of points in R

d can
take up to nΩ(d) time and space, thus limiting our abil-
ity to use it in even moderate dimensions. Here we
show how to reduce the dependence of both time and
space on the ambient dimension to 2O(d). We achieve
this by preprocessing the points using Delaunay mesh
refinement, then building a filtration on the mesh such
that the persistent homology of the mesh closely ap-
proximates the persistent homology of the offsets of
the input points. This makes it practical to compute
persistent homology at all scales in higher dimensions
than was previously possible.

The homology groups give an algebraic description
of the shape of a topological space. For sets in R

3,
the 0th, 1st, and 2nd homology groups describe the
connected components, tunnels, and voids respectively.
Among topological invariants, homology stands out for
its ease of computation: indeed, computing the homol-
ogy of a simplicial complex reduces to a sequence of
simple operations in linear algebra [8].

Persistent homology is useful when the input is only
a point sample rather than a full complex. A sequence
of complexes are constructed on the points at different
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scales. The persistent homology captures those topo-
logical features that remain over a significant range of
scales (see [13, 6] for surveys).

Figure 1: From left to right: The offset filtration, Pα;
the α-Voronoi filtration, V α; and the α-mesh, Dα.

A filtration is a nested sequence of topological spaces.
The offset filtration of a point set P is the filtration
whose elements, Pα, are the unions of α-radius balls
centered at the points of P (See Figure 1, left). The
α-complex filtration is a filtration of the Delaunay tri-
angulation of P that is known to have the same per-
sistent homology as the offset filtration [5]. Unfortu-
nately, the size of the Delaunay triangulation can be up
to Ω(n⌈d/2⌉), even when the points of P are distributed
along some submanifold of R

d [1].
Sparse meshing technology can bypass the worst-

case blow-up in the size of the Delaunay triangulation
while maintaining many of the same properties of the
original Delaunay triangulation [9]. It does this by
adding extra points to the input in such a way that
the Delaunay triangulation complexity is less for the
superset than for the input. Under very mild sam-
pling assumptions, the size of the superset is at most
2O(d)n [10].

2 The α-mesh filtration

Constructing the α-mesh filtration starts with a quality
mesh of the input points. Let P ⊂ R

d be the input
points. Let M ⊃ P be a superset of the input with the
property that for each v in M , the ratio of the radii
of the smallest enclosing ball and largest enclosed ball,
both centered at v, of the Voronoi cell of v is bounded
by a constant τ . The set M and its Voronoi diagram
constitute a τ -quality mesh. The sizes of P and M are



denoted by n and m respectively. The points of M \P

are known as Steiner points.
The mesh M can be filtered to closely approximate

the offset filtration Pα of P . The result is called the
α-mesh filtration and is denoted Dα. For each Steiner
point s, we assign a value t(s) to be the distance from
s to P . For each input point p, we let t(p) be half the
distance from p to M \{p}. The filtration Dα is the set
of input vertices as well as all simplices σ of Del(M)
such that each v ∈ σ has t(v) ≤ α (See Figure 1, right).

Why it works. The α-mesh has a natural dual formed
by the union of Voronoi cells of the vertices v ∈ M with
t(v) ≤ α (See Fig. 1, middle). For technical reasons, we
add to this union the open balls of radius min{α, t(p)}
centered at the input points p ∈ P , which does not af-
fect the combinatorial structure of the dual, and we call
α-Voronoi filtration V α the obtained filtration. Ignor-
ing some technicalities involving the boundary of the
mesh, V α and Pα are multiplicatively τ-interleaved:

∀α ≥ 0, Pα/τ ⊆ V α ⊆ Pατ . (1)

Consider now Pα
log and V α

log, the reparametrizations of
the filtrations Pα and V α over a logarithmic scale:

∀α ≥ 0, Pα
log = P 2α

and V α
log = V 2α

.

Multiplicative τ -interleaving of Pα and V α in the sense
of Eq. 1 implies additive log(τ)-interleaving of their
reparametrizations Pα

log and V α
log:

∀α ≥ 0, P
α−log τ
log ⊆ V α

log ⊆ P
α+log τ
log .

Additively log(τ)-interleaved filtrations are known to
have log(τ)-close persistence diagrams in the bottle-
neck distance [2, 4]. In addition, the Persistent Nerve
Lemma of Chazal and Oudot [3, Lem. 3.4] implies that
V α

log and Dα
log (the log-reparametrization of Dα) have

identical persistence diagrams. Therefore, the persis-
tence diagrams of Dα

log and Pα
log are log(τ)-close in the

bottleneck distance.

3 Time and Space complexities

Computing the persistence barcode involves a variant
of Gaussian elimination of a matrix with dimensions
proportional to the number of mesh simplices. Since M

is well-spaced, the number of simplices is 2O(d)m [12].
Assuming the input point set P is an (ǫ, δ)-sample as
is often assumed (or, more generally, a well-paced point

set [11]), then m ∈ 2O(d)n [10]. Thus, the persistence
computation involves a matrix in 2O(d)n dimensions.
In theory, this could take as much as 2O(d)n2 space and
2O(d)n3 time using the persistence algorithm [7, 14]. In
practice, near-linear running time and memory usage
have been observed.

We know how to compute a small but well-spaced
superset and its Delaunay complex in 2O(d)n space and

2O(d)n log(∆) time [9], where ∆ is the spread of the
input—the ratio of the largest to smallest interpoint
distances. The spread is usually small: on a regular
(ǫ, δ)-sample, it is at most O(n) so that meshing takes
2O(d)n log(n) time. These space and time bounds im-
ply our technique is practical in moderate dimensions,
certainly up to six.

4 Extensions

The methods presented here have several natural ex-
tensions. A tighter approximation to the offset filtra-
tion is possible by refining the mesh. The α-mesh and
the offset filtration can achieve a multiplicative (1+ε)-
interleaving at a cost of O(ε−d) blowup in the complex
size. Also, it is possible to compute the persistent ho-
mology of the complement of the offset filtration by
filtering the Voronoi diagram of V backwards. A third
extension is the complete elimination of any assump-
tions on the sampling by applying linear-size Delaunay
meshing technology [11].
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