
Constructing Hierarchical Trees from Locally Greedy Permutations

Mahmoodreza Jahanseir∗ Donald R. Sheehy†

1 Introduction

Hierarchical trees are powerful data structures to
solve classical computational geometry problems such
as approximate nearest neighbor and range search.
For Euclidean space, quadtrees and k-d trees are the
most famous hierarchical trees, however, they are not
applicable for general metric spaces. Cover trees [1]
and net-trees [2] are two important data structures
for general metric spaces. Cover trees are intended
to be simple and practically efficient. On the other
hand, net-trees are theoretically more powerful and
can be applied to a wider range of problems. How-
ever, their construction algorithm has a prohibitively
complex preprocessing step. Recently, we [3] showed
that cover trees can be transformed to net-trees in
linear time. In this paper, we define a new class
of permutations called locally greedy permutations,
and then present an incremental algorithm to con-
struct cover trees from these permutations. Locally
greedy permutations are more general than greedy
permutations, which are used in [2] to construct net-
trees. Our construction algorithm uses a bottom-up
approach and it has two main steps of insertion and
promotion. We also define semi-compressed cover
trees as intermediate structures between compressed
and uncompressed cover trees which greatly simplify
the algorithm and the analysis.

2 Definitions

In this paper, we assume that the set P of n points
is in a doubling metric space. A metric is called dou-
bling when it has a constant doubling dimension. The
doubling dimension is the minimum value of γ such
that every ball of radius r can be covered with 2γ

balls of radius r/2. A closed metric ball centered
at a point p ∈ P with radius r > 0 is defined as
B(p, r) = {q ∈ P | d(p, q) ≤ r}. The spread ∆ is
the ratio of the distance of the farthest points to the
closest points.

A hierarchical tree is a leveled tree on P such that
points are leaves and each point can be associated
with many internal nodes. We denote a node associ-
ated with a point p in level ` by p`. We use par(p`)
and ch(p`) to show parent and children of a node p`,

∗University of Connecticut reza@engr.uconn.edu
†University of Connecticut don.r.sheehy@gmail.com

respectively. In these trees, each level is a subset of
the level below and we assume that leaves are in level
−∞ and the root is in level +∞. Also, each level
requires to be an (α, β)-net of the level below or the
entire P . An (α, β)-net of a set P is Q ⊆ P such
that for every two points p, q ∈ Q, d(p, q) > α and
d(p, P \Q) ≤ β. We use a constant τ > 1, called the
scale factor, to show the changes of scales between
levels. Removing each node that has only one child
and it is the only child of its parent, and connect-
ing its parent to its child via a long edge results a
compressed hierarchical tree.

Cover trees are hierarchical trees with the following
properties: (Packing) for all distinct p, q in a level
`, d(p, q) > cpτ

`, (Covering) for each rh ∈ ch(p`),
d(p, r) ≤ ccτ

` and rh is the closest node to p among
all node with a level greater than `. Here, cp and
cc are packing and covering constant and we let 0 <
cp ≤ cc. Similar to [3] we denote all cover trees with
the same scale factor, packing constant and covering
constant by CT(τ, cp, cc). In [1], they set τ = 2 and
cp = cc = 1.

Net-trees are also hierarchical trees and for each
node p` we have following properties : (Packing)
B(p, cpτ

`)
⋂
P ⊂ Pp` , (Covering) Pp` ⊂ B(p, ccτ

`).
The two constants cp and cc are defined similarly.
Har-peled & Mendel [2] set cp = (τ − 5)/2(τ − 1)
and cc = 2τ/(τ − 1). In net-trees, each node p`

has a list of nearby nodes or relatives, which is
Rel(p`) = {xf ∈ T with yg = par(xf ) | f ≤ ` <
g, and d(p, x) ≤ crτ

`}. Here, cr is relative constant
and it is usually a function of τ and cc [3].

A greedy permutation is an ordering of the points
such that each point pi is the farthest point in P \
Pi−1, where Pi−1 = {p1, . . . , pi−1}. The predecessor
of a point pi in a permutation is pred(pi), the closest
point to pi in Pi−1. Given Q ⊆ P , the aspect ratio
of a point p ∈ Q with respect to Q is aspectQ(p) =
maxq∈VorQ(p) d(p, q)/d(p,Q \ {p}), where VorQ(p) =
{x ∈ P \ Q | d(p, x) = d(x,Q)}. We define the
aspect ratio of Q ⊆ P to be the maximum aspect
ratio among all points. Given a constant δ ≥ 0, a
permutation is δ-locally greedy if it has aspect ratio
at most δ. For example, a greedy permutation is 1-
locally.



3 Construction

In this section, we propose a linear time, incremen-
tal algorithm to construct a cover tree from a locally
greedy permutation. In our algorithm, Ti is obtained
by insertion of the new point pi as a child of its pre-
decessor in the lowest level of Ti−1 ∈ CT(τ, cp, cc).
This insertion could violate the covering property. In
other words, for some level ` and c′c > cc, we may have
ccτ

`+1 < d(p`i ,par(p`i)) ≤ c′cτ `+1. To restore the cov-
ering property, we promote the new node to higher
levels until we find a node that covers the promoted
node with the original covering constant. Insertion of
a new point may require O(log ∆) time, and a crude
analysis results O(n log ∆) time in total for the entire
construction. Later, we show that the insertion ac-
tually requires constant amortized time and the time
complexity of construction is O(n).

Before describing the algorithm to restore the
covering property, we define a new type of cover
tree called a semi-compressed cover tree. Semi-
compressed cover trees are intermediate structures
between uncompressed and compressed cover trees.
In these trees, we have an additional condition for
a node to be collapsed. Specifically, we collapse a
node when it has only one child, it is the only child
of its parent, and it has no relatives besides it-
self. We have the following theorem for the size of
semi-compressed cover trees. We omit the proof due
to lack of space. However, the proof is constructive
and from a compressed cover tree.

Theorem 1. A semi-compressed cover tree on a set
of n points has O(n) size.

Now, we are ready to present the algorithm to re-
store the covering property with one violating node.
Here, we output a tree which is something between a
compressed and semi-compressed cover tree, and we
call it partially semi-compressed. This tree has cover-
ing constant c′c such that cc/(τ−1) ≤ c′c < cc. In this
algorithm, iteration i indicates promotion of node p`

to level `+ i. Note that in each iteration i, we create
a node p`+i no matter what happens in that itera-
tion. At the beginning, ancestor = p`. Here, we set
cr = cc(

τ
τ−1 )2τ . The i-th iteration of the algorithm

is as follows.

1. Find Rel(p`+i) from relatives and children of rel-
atives of par(par(ancestor)).

2. Among relatives and children of relatives of p`+i

if there is a node in level < `+ i that is closer to

p than its previous parent, then assign that node
as a child of p`+i.

3. Find a node r in Rel(par(par(ancestor))) such
that d(p, r) < c′cτ

`+i+1. If such r exists, set
it as parent of p`+i and quit. Otherwise, set
par(p`+i) = p`+i+1.

4. i = i+ 1, ancestor = par(ancestor).

Theorem 2. Given a cover tree T ∈ CT(τ ≥
2, cp, c

′
c), where max{cc/(τ − 1), cp} ≤ c′c < cc. A

cover tree T ′ ∈ CT(τ ≥ 2, cp, cc) can be constructed
from T in O(n) time.

Proof Sketch. Using the previous algorithm, we re-
store the covering property of T for each violating
node p`. It can be seen that in the i-th iteration of
the algorithm, d(p,par(ancestor)) < crτ

`+i, which
implies p` has at least one relative besides itself, and
it is par(ancestor). We make this relative responsible
to pay the cost of promotion of node p` to level `+ i.
Also note that the final tree T ′ is a partially semi-
compressed cover tree, and by Theorem 1 its size is
O(n). Using a charging scheme, we can restore the
covering property in O(n) time. We omit the details
of the proof due to lack of space.

Now, we return to the main construction algorithm.
For each point pi in the given δ-locally greedy per-
mutation with pj = pred(pi) and j < i, d(pi, pj) ≤
δd(pj , Pi−1). Thus, insertion of pi in Ti−1 as a
child of pj in the lowest level above −∞ results
Ti ∈ CT(τ, cp, δcc). To return the covering property
to the original covering constant cc, we need to run
the previous algorithm for logτ δ times because by
each run of the algorithm, the covering constant is
decreased by a factor of τ . The following theorem
summarizes all the results.

Theorem 3. Given a set P of n points in a δ-
locally greedy permutation, where δ > 1. A cover
tree T ∈ CT(τ ≥ 2, cp, cc) can be constructed from P
in O(n logτ δ) time, where 0 < cp ≤ cc.

References

[1] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees
for nearest neighbor. In Proceedings of the 23rd Inter-
national Conference on Machine Learning, pages 97–104,
2006.

[2] S. Har-Peled and M. Mendel. Fast construction of nets
in low dimensional metrics, and their applications. SIAM
Journal on Computing, 35(5):1148–1184, 2006.

[3] M. Jahanseir and D. R. Sheehy. Transforming hierarchical
trees on metric spaces. In Proceedings of the 28th Canadian
Conference on Computational Geometry, 2016.


