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1 Abstract

Nested dissection exploits underlying topology
to do matrix reductions while persistent homol-
ogy exploits matrix reductions to reveal underly-
ing topology. It seems natural that one should be
able to combine these techniques to beat the cur-
rently best bound of matrix multiplication time
for computing persistent homology. However,
nested dissection works by fixing a reduction or-
der, whereas persistent homology generally con-
strains the ordering. Despite this obstruction, we
show that it is possible to combine these two the-
ories. This shows that one can improve the com-
putation of persistent homology of a filtration
by exploiting information about the underlying
space. It gives reasonable geometric conditions
under which one can beat the matrix multiplica-
tion bound for persistent homology.

2 Overview

Given geometric data, persistent homology gives
a way to extract multiscale shape information
with the goal of understanding the underlying
shape of the distribution from which the data
was drawn. The data induces a function on the
underlying space, usually a distance-like function
to the data. The persistent homology measures
the changes in topology of the sublevel sets of
the function. To do this, one firsts constructs a
filtered simplicial complex, that is, a simplicial
complex with an ordering on the simplices.

The persistence algorithm is a restricted form
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of Gaussian elimination on the boundary ma-
trix of the simplicial complex. As with stan-
dard Gaussian elimination, persistent homology
can be computed in matrix multiplication time.
We let ω denote the smallest exponent such that
matrix multiplication can be computed in O(nω)
time. It is likely that this is also the best possible
running time for computing persistent homology
of general filtered simplicial complexes. How-
ever, if the simplicial complex is coming from
low-dimensional geometric data, one might hope
to exploit that structure to improve the running
time. We show that this is indeed possible.

Our approach combines several different ideas.
We use the output-sensitive algorithm of Chen
and Kerber to reduce the persistence computa-
tion to rank computations [1]. These ranks can
be computed by a divide and conquer method
called nested dissection, which dates back to the
1970s [3] but has recently been extended to the
relevant case of singular matrices over finite fields
by Yuster [6]. However, nested dissection re-
quires that the matrices have a certain sepa-
rability property which is related to cuts in a
graph associated with the matrix. We limit our
attention to filtrations built on quality meshes,
which have been shown to give good approxima-
tions to persistent homology for the Euclidean
distance to a point set by Hudson et al. [2] and
also for more general distance-like functions by
Sheehy [5]. As shown by Miller et al. [4], graphs
coming from quality meshes satisfy the desired
separability property required for nested dissec-
tion. We show that this separability can be ex-
tended to the case of boundary matrices of these
meshes. Putting all of these pieces together, we
get an improvement over matrix multiplication



time for computing the persistent homology of
filtrations on quality meshes as long as the out-
put size is sufficiently bounded.

3 The Main Result

We need a couple definitions in order to state the
main result.

The output of the persistent homology algo-
rithm is a set of pairs of real numbers indicating
the birth and death of a topological feature. The
difference between the birth and death time is
the persistence of the pair. These pairs are often
represented as points in the plane or as intervals.
The former representation is called a persistence
diagram and the latter is called a persistence bar-
code. For a constant Γ ≥ 0, let DΓ be the subset
of the pairs with persistence at least Γ.

A point set P is τ -well-spaced for a constant τ
if in the Voronoi diagram of P , the Voronoi cell
Vp of each p ∈ P satisfies

max
v∈V (Vp)

‖p− v‖

min
q∈P\{p}

1

2
‖p− q‖

≤ τ,

where V (Vp) is the set of vertices (0-cells) of the
polyhedron Vp. The ratio above is called the as-
pect ratio of Vp. The quality meshes used for
mesh-based persistence [2, 5] are Delaunay tri-
angulations of well-spaced point sets.

We are now ready to state the main result.

Theorem 3.1. Let F be a filtration on the De-
launay triangulation of a set of τ -well-spaced
points. For a constant Γ ≥ 0, the subset DΓ of
the persistence diagram of F consisting of those
pairs with persistence at least Γ can be computed
in O(|D(1−δ)Γ|nω(1− 1

d
)) time, where D(1−δ)Γ is

the set of pairs in the persistence diagram with
persistence at least (1 − δ)Γ for any constant
δ > 0.

4 Going forward

Beyond putting together the many different per-
vious results to obtain this theorem, we also
needed to extend the existing geometric separa-
tor theory for τ -quality point sets from graphs to

complexes. Separators provide the dissection in
nested dissection. It may be possible to extend
this further to find separators of other interme-
diate matrices that appear in the direct compu-
tation of persistent homology using matrix mul-
tiplication. This might allow us to remove the
output-sensitive term in the running time of The-
orem 3.1.

We also believe that the language of algebraic
topology may be useful in understanding and
generalizing other algorithmic results related to
nested dissection. Specifically, we are interested
in exploring the relationship between nested dis-
section and discrete Morse theory.

The separators we use depend on the geomet-
ric separator theory. Thus, we exploit the ge-
ometry to improve the running time of the per-
sistence computation. Although previous work
showed how to use the geometry of the input to
decide what to compute, this work shows how
to use the geometry to decide how to compute
it. This breaks the usual separation between a
geometric phase and a topological phase in the
persistent homology pipeline.
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