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Abstract fine X, to be the set of points € S such tha% -v > 0.

_ _ The Tukey depth (of the origin) can be defined formally
We generalize the Tukey depth_ to use cones msteadagfmmvew |X,|. To generalize this, we replace the
halfspaces. We prove a generalization of the center pgifithe definition of X, with a constant: € (—1,1), to
theorem that forS C R, there is a poink € S, with getX,. = {z € S||fc—| v > ¢}. The 6#-cone depth
depth at least?; for cones of half-anglé5°. This gives ¢4, 4 cone with half-anglé/2 is min,cga | X . _ . ol.
a notion of data depth for which an approximate medi o2

. . [of” =
can always be found among the original set. @quwalently, the cone depth pfis n minus the maximum

number of points that may be contained in the interior of
a cone with apex at. In particular, Tukey depth is equiv-

alent to180°-cone depth. In this note, we focus on the
1 Cone Depth interesting properties of th#°-cone depth.

Many different notions of data depth have been proposed

as ways to generalize the rank and the median of an gy- .

dered list to the case of higher dimensional point sez. TheMain Result

Several nice surveys are available on different depth mser% . Itis th £ 00 here i
sures and how to compute them [GSW92, Alo01, FRO5]. € main resultis t gt amoong any set of points, there Is
One of the most enduring definitions of data depth is tﬁgg/\_/ays one that has line@f°-cone depth. We call such a
Tukey depth, also known as the half-space depth. point acenter vertex.

The Tukey depth of a point relative to a point sef
is defined as the minimum number of points on one side
of any hyperplane through. The Center Point Theorem
states that there exists a pointi{ with Tukey depth at
least 1. Because no point can have Tukey depth greater
than 3, a center point is a constant-factor approximate
median.

One difficulty of traditional measures of data depth is
that the median (or even an approximate median) is of-
ten not among the points in the set. Popular depth mea-
sures such as the Tukey depth and simplicial depth have
the property that if the sef is in convex position then theFigure 1: The point: is a center point and is a center
depth of every € S is 0. Thus, they may not give muchvertex.
information about the relative depth of the original set.

We introduce theone depth, a natural generalization
of Tukey depth in which the halfspace of points is treatdtheorem 2.1 For all n point sets S C R?, there exists a

as a cone of half-angl)°. Letv be a unit vector and de-vertex v € S with 90°-cone depth ..




Proof: Let c be a center point for the séf, i.e. c has 225 — (k — 1). It follows that at least Iea% points
Tukey depthzi;. Letwv be the nearest point iff to c. in S have depth at Iea%t(d”Tl)_ Thus, the average depth
Let C be any90° cone with apex abt. If ¢ ¢ C then of g pointingS is at least;

there exists a plan® throughc such that the con€' lies The linear expected d(eptr)l of the pointsdrmay have

entirely on one side oP. In this case, the theorem followsamifications for randomized algorithms, as it implies that

directly from the center point theorem. arandomly chosen point can be used to generate a roughly
We now consider the case wherec C. We choose pajanced geometric partition 6f Moreover, one can find

a vectorve = (c1,...,ca-1, —cq) to define a plan&” g pointwith linear depth with high probability in sublinear

through the point. Because is a center point, there ar&jme. This is accomplished by first finding an approximate

at most;’—ﬁ points aboveP. To prove the theorem, it will capter point using methods from [CEMN3]. This will

suffice to show that there are no points both in the d@negchieve a point that has Tukey deptf(Z) with high

and belowp. probability. Sampling a constant number of points and

Cone depth is invariant under dilation and rigid trangatyrning the closest towill have linear cone depth with
formations so we may assume without loss of generalfyyh probability.

thatwv is at the origin, the cone axis (9, ...,0,1), and
|| = 1. Suppose for contradiction that there exists a point
p € S inside the cone and beloR. Sincep is belowP, 4 Some Open Problems
we can write itap = kc+tq wherek € [0, 1], ¢-v. = 0,
and|q| = 1. Sincep € C, we know that2p? > |p|>. We conclude with several interesting problems related to
Substitutingy = kc + tq in this inequality yields the fol- cone depth that remain open. 98° the largest value
lowing. for which the existence of a center vertex is guaranteed?
Given a poinp € R?, how fast can we compute the cone
2(k*c4 4 2ktcaqa + t2q3) > k* + 2kt(c - q) + t* depth ofp? Given a set of point§ C R?, how fast can
we find a center vertex deterministically? How fast can

Sinceq - v = 0, it follows thatg - ¢ = 2c4q4. Substituting we find a point of maximal cone depth?
this in the above inequality, we get
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Theorem 2.1 says that amofgthere is a point with lin-

ear90°-cone depth. The proof of this theorem indicates
a way to lower bound the expected depth of any point in
S. In the proof, we showed that nearest S to a center [GSW92] Joseph Gil, William L. Steiger, and Avi

pointc has depth;. The same arguments can be used Wigderson. Geometric mediansDiscrete
to show that thé:-th nearest € S to ¢ has depth at least Mathematics, 108(1-3):37-51, 1992.



