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Abstract

We generalize the Tukey depth to use cones instead of
halfspaces. We prove a generalization of the center point
theorem that forS ⊂ R

d, there is a points ∈ S, with
depth at least n

d+1 for cones of half-angle45◦. This gives
a notion of data depth for which an approximate median
can always be found among the original set.

1 Cone Depth

Many different notions of data depth have been proposed
as ways to generalize the rank and the median of an or-
dered list to the case of higher dimensional point sets.
Several nice surveys are available on different depth mea-
sures and how to compute them [GSW92, Alo01, FR05].
One of the most enduring definitions of data depth is the
Tukey depth, also known as the half-space depth.

The Tukey depth of a pointp relative to a point setS
is defined as the minimum number of points on one side
of any hyperplane throughp. The Center Point Theorem
states that there exists a point inR

d with Tukey depth at
least n

d+1 . Because no point can have Tukey depth greater
than n

2 , a center point is a constant-factor approximate
median.

One difficulty of traditional measures of data depth is
that the median (or even an approximate median) is of-
ten not among the points in the set. Popular depth mea-
sures such as the Tukey depth and simplicial depth have
the property that if the setS is in convex position then the
depth of everys ∈ S is 0. Thus, they may not give much
information about the relative depth of the original set.

We introduce thecone depth, a natural generalization
of Tukey depth in which the halfspace of points is treated
as a cone of half-angle90◦. Let v be a unit vector and de-

fineXv to be the set of pointsx ∈ S such that x
|x| · v ≥ 0.

The Tukey depth (of the origin) can be defined formally
as minv∈Rd |Xv|. To generalize this, we replace the0
in the definition ofXv with a constantc ∈ (−1, 1), to
get Xv,c = {x ∈ S| x

|x| · v ≥ c}. The θ-cone depth
for a cone with half-angleθ/2 is minv∈Rd |X v

|v|
,− cos θ

2

|.

Equivalently, the cone depth ofp isn minus the maximum
number of points that may be contained in the interior of
a cone with apex atp. In particular, Tukey depth is equiv-
alent to180◦-cone depth. In this note, we focus on the
interesting properties of the90◦-cone depth.

2 The Main Result

The main result is that among any set of points, there is
always one that has linear90◦-cone depth. We call such a
point acenter vertex.
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v

Figure 1: The pointc is a center point andv is a center
vertex.

Theorem 2.1 For all n point sets S ⊂ R
d, there exists a

vertex v ∈ S with 90◦-cone depth n
d+1 .
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Proof: Let c be a center point for the setX , i.e. c has
Tukey depth n

d+1 . Let v be the nearest point inS to c.
Let C be any90◦ cone with apex atv. If c /∈ C then
there exists a planeP throughc such that the coneC lies
entirely on one side ofP . In this case, the theorem follows
directly from the center point theorem.

We now consider the case wherec ∈ C. We choose
a vectorvc = (c1, . . . , cd−1,−cd) to define a planeP
through the pointc. Becausec is a center point, there are
at most dn

d+1 points aboveP . To prove the theorem, it will
suffice to show that there are no points both in the coneC
and belowP .

Cone depth is invariant under dilation and rigid trans-
formations so we may assume without loss of generality
that v is at the origin, the cone axis is(0, . . . , 0, 1), and
|c| = 1. Suppose for contradiction that there exists a point
p ∈ S inside the cone and belowP . Sincep is belowP ,
we can write it asp = kc+ tq wherek ∈ [0, 1], q ·vc = 0,
and |q| = 1. Sincep ∈ C, we know that2p2

d > |p|2.
Substitutingp = kc + tq in this inequality yields the fol-
lowing.

2(k2c2
d + 2ktcdqd + t2q2

d) ≥ k2 + 2kt(c · q) + t2

Sinceq ·vc = 0, it follows thatq · c = 2cdqd. Substituting
this in the above inequality, we get

2(k2c2
d + t2q2

d) ≥ k2 + t2.

We can rearrange this to see thatt2 ≤ k2 2c2

d
−1

(1−2q2

d
)
. If θ is

the angle thatc makes with the cone axis thencd = cos θ

andqd ≤ sin θ. Therefore,c2
d + q2

d ≤ 1 and 2c2

d
−1

1−2q2

d

≤ 1.

We can conclude thatt ≤ k. Thus,|c − p| ≤ |c − ck| +
t < (1 − k) + k < 1. This is a contradiction because
we assumed thatv was the nearest point inS to c and
|c − v| = 1.

3 Expected Depth

Theorem 2.1 says that amongS, there is a point with lin-
ear90◦-cone depth. The proof of this theorem indicates
a way to lower bound the expected depth of any point in
S. In the proof, we showed that nearests ∈ S to a center
point c has depth n

d+1 . The same arguments can be used
to show that thek-th nearests ∈ S to c has depth at least

n
d+1 − (k − 1). It follows that at least least n

2(d+1) points
in S have depth at least n

2(d+1) . Thus, the average depth
of a point inS is at least n

4(d+1)2 .
The linear expected depth of the points inS may have

ramifications for randomized algorithms, as it implies that
a randomly chosen point can be used to generate a roughly
balanced geometric partition ofS. Moreover, one can find
a point with linear depth with high probability in sublinear
time. This is accomplished by first finding an approximate
center point using methods from [CEM+93]. This will
achieve a pointc that has Tukey depthΩ( n

d2 ) with high
probability. Sampling a constant number of points and
returning the closest toc will have linear cone depth with
high probability.

4 Some Open Problems

We conclude with several interesting problems related to
cone depth that remain open. Is90◦ the largest value
for which the existence of a center vertex is guaranteed?
Given a pointp ∈ R

d, how fast can we compute the cone
depth ofp? Given a set of pointsS ⊂ R

d, how fast can
we find a center vertex deterministically? How fast can
we find a point of maximal cone depth?
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