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Abstract

We present an algorithm for computing Voronoi di-
agrams and Delaunay triangulations of point sets in
Rd. We also give an output-sensitive analysis, prov-
ing that the running time is at most O(m log n log ∆),
where n is the input size, m is the output size, and
the spread ∆ is the ratio of the diameter to the closest
pair distance. For many realistic settings, the spread
is polynomial in n, in which case we have the only
known algorithm that is within a poly-logarithmic
factor of optimal for the entire range of output sizes
and any fixed dimension.

1 Introduction

Delaunay refinement starts with the Delaunay tri-
angulation of a set of points P and then proceeds
to add extra points called Steiner points to improve
the quality of the Delaunay simplices (see for exam-
ple [4]). Here quality could take different definitions
depending on the application, and we call the output
a quality mesh on a well-spaced superset of P . This
simple procedure has a worst-case running time that
is at least the cost of building DelP , the Delaunay tri-
angulation of the input points, since that is the first
step. In 2006, the Sparse Voronoi Refinement (SVR)
algorithm of Hudson, Miller, and Phillips reordered
the priorities of the standard algorithm and proved
a nearly optimal bound of the running time for any
fixed dimension d [5]. In particular, they showed that
for many inputs, one can compute the Delaunay tri-
angulation of a well-spaced superset of the input in
less time than it would take to compute the Delaunay
triangulation of the input alone. This is only possible
because of the large gap between the best-case and
worst-case complexity of Delaunay triangulations as
a function of n := |P | [8]. The quality condition
guarantees that the refined output lies close to the
best-case, i.e. all vertices touch only a constant num-
ber of Delaunay simplices.

In this paper, we turn this story around and ex-
plore the reverse question: If computing a Delaunay
triangulation of P is no longer a prerequisite for com-
puting a quality mesh, then might it be possible to
use the quality mesh to efficiently compute the Delau-
nay triangulation of P? Indeed, we give a simple algo-
rithm that removes all of the Steiner points by a sim-
ple local flipping routine, leaving behind DelP . We
show how to characterize the flips in terms of the in-
tersection of two Voronoi diagrams. Then, we bound
the total number of combinatorial changes through-
out the algorithm by bounding these intersections,
which can be done using standard tools from the mesh
generation literature.

2 Related Work

Previous output sensitive methods for Voronoi dia-
grams in higher dimensions were based on computing
convex hulls. The shelling approach of Seidel achieves
O(n2 +m log n) running time [7]. This was improved
slightly to lessen the quadratic preprocessing by Ma-
tousek and Schwartzkopf [6]. Another approach is
a “gift-wrapping” algorithm due to Chan [2]. Later
improvements by Chan et al. give an O(m log2 n) for
Voronoi diagrams in R3 [3]. Similarly, an O(m log3 n)
algorithm was given for Voronoi diagrams in R4 by
Amato and Ramos[1].

3 The Algorithm

There are three phases to the algorithm. In the first
phase, a quality mesh is constructed using SVR within
a bounding box containing the points. This mesh has
O(n log ∆) vertices and O(n log ∆) simplices. The
second phase uses local flips to remove the Steiner
points. These flips are ordered to maintain a weighted
Delaunay triangulation with the weights of all input
points increasing uniformly from 0 to∞. The poten-
tial flips are stored in a heap and ordered according



Figure 1: An illustration of the algorithm from left to right. Starting with a point set, it is extended to a
quality mesh. Then the weights of the input points are increased until the extra cells disappear.

to the weights of the input points when the flip will
occur. In the third and final phase, the boundary
vertices are removed. These vertices must be han-
dled separately because they appear in the weighted
Delaunay triangulation for all possible weight assign-
ments to the points.

4 Analysis

When do flips happen? The key to the analy-
sis is to bound the number of flips that occur in the
transformation from VorM to VorP . We do this by
observing that a flip happens at time t exactly if there
is a degenerate (d+2)-tuple of points under the stan-
dard lifting

p 7→ (p, ‖p‖2 − w2
p),

where the weight wp is t for input points and 0 for
Steiner points. That is, all d+ 2 lifted points lie on a
common hyperplane. This hyperplane in Rd+1 has a
dual point using the duality:

(x1, . . . , xd+1)⇔ yd = 2x1y1 + · · ·+ 2xdyd − xd.

For such collections of points, the dual point projects
to the orthocenter of the weighted points, the cen-
ter of a sphere that intersects tangentially each the
spheres with center p and radius wp. By partition-
ing these points into two sets I and S depending on
whether they are input points or Steiner points, one
can easily compute that the distance from the ortho-
center to each point of I is the same. Similarly, the
distance from the orthocenter to each point of S is
the same. Thus, the orthocenter is the intersection
of a face of VorP and a face of VorM . Since all flips
are characterized this way, we can bound the num-
ber of flips by bounding the number of intersections
between these two Voronoi diagrams.

Counting flips. In many problems, it is quite chal-
lenging to bound the number of flips, but several fac-
tors make it possible for our algorithm. First, the ra-
dius of the Voronoi cell of a Steiner point in a quality
mesh is proportional to its distance to the nearest in-
put point. Second, the Voronoi cells of Steiner points
in VorM have only a constant number of faces. So,
by an easy packing argument, we get that the num-
ber of face-face intersections between VorP and VorM
is at most O(m log ∆). That is, each (d − k)-face of
VorP can only intersect O(log ∆) k-faces of VorM . So
the total number of flips is O(m log ∆) and the total
running time is O(m log n log ∆), where the extra log
term comes from the heap operations needed to order
the flips.
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