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Abstract

The beauty of persistent homology for topological data
analysis is that it obviates the need to choose an ex-
plicit scale at which to view the data. Not only does
one skip the problem of tuning parameters, but also
the output shows explicitly which features are robust
to perturbations of scale. Unfortunately, de-noising the
data as a preprocess often leads to new parameters to
choose. We show how to replace the Euclidean distance
with a family of distance functions to de-noise the data
as part of the persistence computation. The result is an
instance of multidimensional persistence where we can
tell not only what topological features are present but
also how robust they are to changes in the de-noising
parameters.

1 Introduction

In practice, topological inference has three phases: one
statistical, one geometric, and the third, topological.
First, the data is filtered for noise. Second, the geom-
etry of the points drives the construction of a filtered
simplicial complex. Third, the persistent homology of
the filtered complex is computed. Usually, the empha-
sis is placed on the latter two phases with the first
treated as a necessary evil. And it is necessary; even a
small number of outliers can generate spurious persis-
tent features that foil existing methods.

The process of de-noising the data introduces a new
set of parameters, one for the scale at which to define
density and one to threshold between signal and noise.
So, although no explicit scale is chosen to compute the
persistent homology, one is chosen to de-noise the data.
The problem is both aesthetic and practical. It is both
more elegant to do all three phases without tuning any
parameters, and it is also be more useful, as de-noising
parameters can be difficult to choose for topological
applications (see [7]).

In our approach, we replace the usual distance to
the input set P , with the kth nearest neighbor distance,
dk. This replaces the α-offsets, Pα =

⋃

p∈P ball(p, α)
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Figure 1: The α-offsets overlaid with the (2, α)-offsets.

with the (k, α)-offsets, Pα
k = d−1

k (−∞, α] as our esti-
mate of the shape at scale α.

Figure 2: Two inputs yielding persistent cycles with the same
birth and death times. The cycle on the left uses
relatively few points while the cycle on the right uses
unboundedly many. Our approach allows us to tell
the difference between these two cases.

Our contributions:

• We present barycentric multifiltrations, a natural
way to filter a filtered complex by a second parameter.
We then show that the barycentric mutifiltration of the
Čech filtration captures exactly the persistent homol-
ogy of the (k, α)-offsets.
• We prove approximation guarantees for mesh-based
filtrations of more general smooth functions. This al-
lows us to construct a multifiltered complex that ap-
proximates the (k, α)-offsets that is the same size as the
corresponding mesh filtration for the α-offsets. Per-
haps surprisingly, for k > 1, both the filtration and its
analysis are simpler than for the usual distance func-
tion, d1. Thus these results are both simpler to under-
stand and implement while also being more generally
applicable.



2 Background

Filtrations and Persistent Homology. The 0th,
1st, and 2nd homology groups describe the connected
components, holes, and bubbles in a space respectively.
Similarly, the higher order homology groups describe
the non-bounding cycles of higher dimension.

A filtration is a nested family of topological spaces,
parameterized by single variable. In persistent homol-
ogy, the changes in homology over the course of a fil-
tration are computed. Instead of a static snapshot of
the topology of Fα, we get a movie of the topological
changes in {Fα}α≥0 as α grows. Persistent homology
can be computed for several different types of filtrations
in time polynomial in the complexity of the filtration
(see [9] for more a primer on persistence).

If a space is filtered by more than one parameter,
we have a multifiltration. There are polynomial-time
algorithms for multidimensional persistence as well as
for the one-dimensional case [1].

Persistence Diagrams. The output of the persis-
tence algorithm is a persistence diagram that marks
each homology class with a point in the plane, using
the birth and death times as the x and y coordinates.
Features that persist for a long time, those with a large
gap between birth and death times, appear far from the
diagonal y = x, whereas short-lived features (topologi-
cal noise) concentrate around this diagonal.

The theory of approximate persistence diagrams is
derived from the stability of persistence diagrams [4].
For stability, the goal is to show that two similar inputs
yield similar outputs. For approximation, we replace
one of these inputs with the true filtration that we want
to approximate, Pα

k in our case, and argue that our ap-
proximate filtration will produce a persistence diagram
that is provably close to the persistence diagram of the
true of filtration. The main result we use for this is a
special case of the Strong Stability Theorem of Chazal
et al. [2], rephrased into the language of multiplicative
approximations (see also [6]).

Theorem 1 (Chazal et al. [2]). Let {Fα} and {Gα}
be two tame filtrations. If Fα/c ⊆ Gα ⊆ F cα for all
α ≥ 0, then the persistence diagram of {Fα} is a c-
approximation to the persistence diagram of {Gα}.

Distance Functions and Offsets. Let dP (x) be the
distance from x to the nearest points of P . The sublevel
d−1

P (−∞, α] is called the α-offsets, and is denoted Pα.
Equivalently, the α-offsets are the union of closed α-
balls centered at points of P .

A simple modification gives a distance function that
is more robust to outliers. Define the kth nearest neigh-
bor distance, dk, to be the distance to k points of P .

The sublevels of dk are the (k, α)-offsets, denoted Pα
k :

Pα
k = d−1

k (−∞, α].

Equivalently, the (k, α)-offsets are the points contained
in at least k balls of radius α centered at points in P
(see Figure 1). The family of sets {Pα

k }k,α is a filtration
in both α and |P | − k. We are interested in computing
the persistence diagram of the (k, α)-offsets.

Simplicial Complexes. Simplicial complexes discretize
the topological spaces in a filtration. An abstract sim-
plicial complex is a family of subsets of a vertex set V
that is closed under taking subsets. A set σ ⊂ V of a
simplicial complex is called a simplex and the dimen-
sion of σ is defined to be |σ − 1|, where | · | denotes
cardinality. The subsets of σ are its faces.

A simplicial complex, K, is filtered if there is an
assignment of nonnegative real numbers to simplices
such that every simplex is assigned a value greater than
or equal to that of its faces, i.e. t : K → R such that
t(σ′) ≤ t(σ) for all σ′ ⊂ σ. Thus, we get a filtration
{Kα}α≥0, where Kα = {σ ∈ K : t(σ) ≤ α}.

Nerves and Barycentric Decomposition. Given
a collection of closed sets U , the nerve of U is a simpli-
cial complex with vertex set U and simplices for subsets
of U with a common intersection. The Nerve Theorem
states that the nerve of collection of sets is homotopy
equivalent to their union if all intersections of finitely
many sets are either empty or contractible. Such a
family U is called a good closed cover of

⋃

u∈U u. The
Persistent Nerve Lemma of Chazal and Oudot [3] al-
lows us to move easily between filtrations on geometric
spaces and filtered simplicial complexes.

Given a simplicial complex, K, the barycentric de-
composition, K̃, is a new simplicial complex with ver-
tex set K and simplices {σ0, . . . , σj} ⊂ K whenever
σ0 ⊂ · · · ⊂ σj . Every simplicial complex is topologi-
cally equivalent to its barycentric decomposition.

Figure 3: The Čech filtration and the α-mesh filtration.

The Čech filtration. The Čech complex at scale α,
Cα, is the nerve of the set {ball(p, α)}p∈P . If α is at
least half the diameter of P , the Čech complex contains
every possible simplex, i.e. Cdiam(P )/2 = 2P . To avoid
this combinatorial blowup in the size of the complex,
it is common to truncate the filtration at some maxi-
mum scale, αmax. It is also common to only consider
simplices up to the dimension of the ambient space.



3 Barycentric Multifiltration

The vertices of the barycentric decomposition K̃ of a
complex K are simplices of K and thus have a dimen-
sion associated with them. To avoid confusion we refer
to this as the number of the vertex. This leads to a
natural filtration on K̃ defined to be {K̃k}k, where K̃k

is the subcomplex induced on the vertices numbered at
least k − 1 (the filter parameter here goes down rather
than up but this is not a problem). If we have a fil-
tered complex {Kα}α, then we can apply this method
to form the barycentric multifiltration, {K̃α

k }k,α.

The barycentric Čech complex Let C̃α be the
barycentric decomposition of the Čech complex at scale
α, and let {C̃α

k }k,α be its barycentric multifiltration.
The following theorem establishes a topological equiv-
alence between C̃α

k and Pα
k .

Theorem 2. The barycentric Čech complex, C̃α
k , is

homotopy equivalent to the (k, α)-offsets, Pα
k , for all

α ≥ 0 and all k ∈ N.

Proof. Let Nα
k be the nerve of all k-wise intersections

of α-balls centered at points of P and let Ñα
k denote

its barycentric decomposition. By the Nerve Theorem,
Nα

k is homotopy equivalent Pα
k and therefore Ñα

k is
also. It will suffice to demonstrate a homotopy equiv-
alence from Ñα

k to C̃α
k . We will first show that C̃α

k can

be identified with a subcomplex of Ñα
k . Next, we will

show that the desired homotopy is a deformation re-
traction onto this subcomplex induced by a projection
of the vertex set.

We start by defining an injective map from C̃α
k to

Ñα
k . A vertex of C̃α

k corresponds to a collection S of at
least k points whose α-balls intersect. It follows that
(

S
k

)

corresponds to a vertex in Ñk. This map from

vertices S in C̃α
k to vertices

(

S
k

)

∈ Ñα
k extends naturally

to the higher order simplices.

Figure 4: We transform the collection of balls in two different
ways to get homotopy equivalent complexes, C̃α

k
(top)

and Ñα

k
(bottom) for k = 2.

Now, we will give a surjective map from Ñα
k to

C̃α
k , again defined by mapping the vertices. Let V =

{V0, . . . , Vj} ⊂
(

P
k

)

be a vertex of Ñα
k . Since it is a ver-

tex, this means that
⋂j

i=0

⋂

p∈Vi
ball(p, α) 6= ∅. This is

equivalent to the statement that
⋂

p∈QV
ball(p, α) 6= ∅,

where QV =
⋃

Vi∈V Vi. This fact along with the obser-

vation that |QV | ≥ k imply that QV is a vertex of C̃α
k .

We map all such vertices V in Ñα
k to their correspond-

ing vertices QV in C̃α
k . This map extends easily to the

higher order simplices.
The composition of the two maps takes vertices

V ∈ Ñα
k to vertices V ′ =

(

QV

k

)

∈ Ñα
k . For each

such vertex V , there is a corresponding subset of R
d,

SV =
⋂

u∈V

⋂

p∈u ball(p, α). We can observe that SV

and SV ′ are identical:

SV =
⋂

u∈V

⋂

p∈u

ball(p, α) =
⋂

p∈QV

ball(p, α)

=
⋂

u∈(QV
k )

⋂

p∈u

ball(p, α) = SV ′ . (3.1)

The simplices {V0, . . . , Vj} of Ñα
k are those fami-

lies of k-element sets of P such that SV0
⊆ · · · ⊆ SVj

.

So, Equation (3.1) implies that if σ is a simplex of Ñα
k

containing V then σ ∪ {V ′} is also a simplex of Ñα
k .

Thus, the projection that takes V to V ′ for all ver-
tices in Ñα

k induces a homotopy equivalence, because
it merely projects simplices to a faces on their bound-
ary.

This homotopy equivalence can be combined with
standard topological methods to yield the following
theoretical guarantee.

Theorem 3. For any fixed k, the persistence diagram
of the barycentric Čech filtration, {C̃α

k }, is identical to
the persistence diagram of the (k, α)-offsets, {Pα

k }.

4 Filtrations on Meshes

In this section we will construct a filtered simplicial
complex whose persistence diagram is provably close to
that of (k, α)-offsets. The advantage of this approxima-
tion is that it has only linear size, whereas the barycen-
tric Čech filtration could have size doubly exponential
in n.

Let M be a superset of the input set P and let
Vor(M) denote its Voronoi diagram. Let Vor(v) be the
Voronoi cell of a vertex v ∈ M restricted to some com-
pact bounding box that contains M . The in-radius,
rv, is the radius of the largest ball centered at v con-
tained in Vor(v). The out-radius, Rv, is the radius of
the smallest ball centered at v containing Vor(v). The
aspect ratio of Vor(v) is Rv

rv
. We say M is ρ-well-spaced

if every Voronoi cell has aspect ratio at most ρ. A set
M is ε-refined if for every vertex v in M , the outer
radius Rv is at most εd2(v), where d2 is measured with
respect to P . Given n points P , standard Voronoi re-
finement meshing algorithms can produce a superset



M of P that is both ρ-well-spaced and ε-refined [5, 6].
Moreover, for reasonable inputs, |M | = O(n)1.

For any function f : R
d → R, we can construct the

following filtrations based on f , Vor(M), and Del(M):

1. The sublevel filtration: Fα = f−1(−∞, α].

2. The Voronoi filtration: Vα =
⋃

v∈M
f(v)≤α

Vor(v).

3. The Delaunay filtration: Dα = {σ ∈ Del(M) :
∀v ∈ σ, f(v) ≤ α}.

The Persistent Nerve Lemma implies that the Voronoi
and Delaunay filtrations are homotopy equivalent. We
will follow the pattern that algorithms operate on the
Delaunay filtration and proofs work with the Voronoi
filtration.

Given a function f that is sufficiently large and suf-
ficiently smooth, the Delaunay filtration on a ρ-well-
spaced, ε-refined set M gives a constant factor approx-
imation to the persistence diagram of the sublevel fil-
tration of f . The following two technical lemmas show
how the Voronoi filtration is interleaved with the sub-
level filtration.

Lemma 4. If for all v ∈ M and all x ∈ Vor(v),
1
cf(x) ≤ f(v) ≤ cf(x) for some constant c ≥ 1, then

Vα/c ⊆ Fα ⊆ Vcα, for all α ≥ 0.

Proof. First we prove that Vα/c ⊆ Fα. If x is a point
in Vα/c then f(v) ≤ α/c. It follows that f(x) ≤ α, and
so x ∈ Fα. Next, we prove that Fα ⊆ Vcα. If x is in
Fα then f(x) ≤ α and thus f(v) ≤ cα. It follows that
Vor(v) ⊂ Vcα, and so x ∈ Vcα.

Lemma 5. If M is ε-refined and f is a t-Lipschitz
function with f ≥ d2, then

1

1 + ε0
f(x) ≤ f(v) ≤ (1 + ε0)f(x).

for all v ∈ M and x ∈ Vor(v), where ε0 = tε
1−tε .

Proof. Let v ∈ M and x ∈ Vor(v) be chosen arbitrarily.
Then we may bound f(x) as follows.

f(x) ≤ f(v) + t|v − x| [f is t-Lipschitz]

≤ f(v) + tεd2(v) [Rv ≤ εd2(v)]

≤ (1 + tε)f(v) [d2 ≤ f ]

< (1 + ε0)f(v). [ε0 > tε]

1For unreasonable inputs, other tricks can guarantee linear
size (see [8])

Similarly, we can bound f(v):

f(v) ≤ f(x) + t|v − x| [f is t-Lipschitz]

≤ f(x) + tεd2(v) [Rv ≤ εd2(v)]

≤ f(x) + tεf(v) [d2 ≤ f ]

≤
1

1 − tε
f(x) [Collect terms]

= (1 + ε0)f(x)

[

1 + ε0 =
1

1 − tε

]

The preceding lemmas and Theorem 1 imply the fol-
lowing theorem.

Theorem 6. If M is an ε-refined, and f ≥ d2 is t-
Lipschitz, then the persistence diagram of the Delaunay
(or equivalently, the Voronoi) filtration on f and M is
a 1

1−tε -approximation to the persistence diagram of the
sublevels filtration of f .

The result for general functions applies easily to
the class of kth nearest neighbor distances to yield the
following corollary.

Corollary 7. If M is ρ-well-spaced and k ≥ 2, then
the persistence diagram of the Delaunay (or equiva-
lently, the Voronoi) filtration on dk and M is a 1

1−ε -
approximation to the persistence diagram of the sub-
levels filtration of f .
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