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Tighter Bounds on the Size of Optimal Meshes

Donald R. Sheehy

Abstract

The theory of optimal size meshes gives a method for
analyzing the output size of a Delaunay refinement
mesh in terms of the integral of a sizing function over
the space. The input points define a maximal such
sizing function called the feature size. Integrating the
feature size function over input domain is not easy,
and historically, was not deemed necessary. Match-
ing upper and lower bounds in terms of this inte-
gral seemed sufficient. However, a new analysis of
the feature size integral [9] led to linear-size Delau-
nay meshes [9], the Scaffold Theorem relating surface
and volume meshes [8], and a time-optimal output-
sensitive point meshing algorithm [10]. The key idea
is to consider the pacing of an ordered point set, a
measure of the rate of change in the feature size as
points are added one at a time. In previous work,
Miller et al. showed that if an ordered point set has
pacing φ, then the number of vertices in an optimal
mesh will be O(φdn), where d is the input dimension.
We give a new analysis of this integral showing that
the output size is only O(n log φ). The new analysis
tightens all of the previous results mentioned above
and provides matching lower bounds.

1 Introduction

Delaunay refinement is the adding of new vertices to
an initial starting set, so that the Delaunay simplices
all have a bounded circumradius-to-shortest-edge ra-
tio (see Figure 1). A celebrated result of Ruppert [13]
showed how to construct such meshes with an optimal
number of vertices. The straightforward generaliza-
tion of Ruppert’s work to Rd says that the number
of vertices in an optimal mesh of a domain Ω ⊂ Rd
starting with a point set P is bounded by the feature
size integral:

Θ

(∫
Ω

dx

fP (x)d
.

)
The function fP : Rd → R≥0 is the feature size
induced by the input set P and is defined as

fP (x) = min{r : |P ∩ ball(x, r)| ≥ 2}.

Clearly, fP is 1-Lipschitz. Here and throughout, the
asymptotic bounds suppress constants that are singly
exponential in d.

Such high dimensional meshes are ideal for geomet-
ric and topological inference as they provide a nice
basis for a space of smooth functions graded accord-
ing to the density of the input points [7, 14]. Such
functions, such as the distance function to the input
or the distance to the empirical measure, can be used
to recover the homology of the underlying space from
which the input was sampled [3, 2].
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Figure 1: Three examples of triangles with different
circumradius to shortest edge ratios. Delaunay refine-
ment attempts to produce a mesh in which all sim-
plices have this ratio bounded by a constant.

The tight bounds on mesh sizing from the Ruppert
bounds are nice, but they are not very informative be-
cause they depend on the feature size integral. They
do not, for example, tell when the output size will
be O(n2) or O(n) or any other tidy function of n.
Moreover, they do not give an easy way to evaluate
the amortized change in the output size as a result of
adding a single new point.

In this paper, we give a new analysis of the fea-
ture size integral that provides tight upper and lower
bounds. Our analysis makes it clear exactly when an
input will yield an optimal mesh of O(n) size. More-
over, the analysis, gives a tight bound on the influence
of a single new point, which may have implications for
future algorithms, particularly in dynamic meshing.

If we order the input set P = {p1, . . . , pn}, we
can define the ith prefix of the ordering to be Pi =
{p1, . . . , pi}. For any point pi in the ordering (i ≥ 3),
the pacing is defined as the ratio φi of the feature
sizes at pi induced by Pi−1 and Pi:

φi =
fPi−1(pi)

fPi(pi)
.

Let φP = maxi φi denote the pacing of the order-
ing.

In previous work, it was shown that the feature
size integral is at most O(nφdP ) [9]. Theorem 1 (be-
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low) implies a bound of O(n log φP ), eliminating the
exponential dependence on d. This tightens the pre-
vious results using this method, moving them from
theoretically novel to practically useful.

We need a few definitions in order to state the main
result. We will use | · | to denote the Euclidean norm
for points and cardinality for sets. Let ball(c, r) de-
note the closed Euclidean ball of radius r centered
at c. Let Vd denote the volume of the unit ball
B = ball(0, 1), so dVd is the (d− 1)-dimensional vol-
ume of the sphere bounding B.

Theorem 1 Let P = {p1, . . . , pn} be a set of n points
in Rd such that p1 and p2 are the farthest pair. Let
Ω be a subset of Rd such that

ball(p1, 2|p1 − p2|) ⊆ Ω ⊆ ball(p1, c|p1 − p2|),

for some constant c ≥ 2. Then,∫
Ω

dx

fP (x)d
= VdΘ

(
n+

n∑
i=3

log φi

)
.

The proof will be broken up into two parts: the
upper bound in Theorem 4 and the lower bound in
Theorem 6.1

2 Related Work

The spread ∆P of a point set P is the ratio of the
largest to smallest interpoint distances. A standard
bad case for meshing illustrated on the left in Fig-
ure 2 occurs when there is high spread and a large
empty annulus around the close points. On the right
of Figure 2, the point set has been refined. Approxi-
mately a constant number of points appear in each of
the geometrically growing annuli. Thus the number
of points added is roughly the log of the ratio of the
inner and outer radius. Observe that other than the
inner most annuli, the number of points added is not
heavily affected by the number of points on the inside.
As a result, previous methods to characterize the fea-
ture size locally such as the gap ratio introduced by
Talmor [15] can dramatically overestimate the feature
size integral because each interior point pays for all of
the refinement. In the worst case, such an analyses
lead to an O(n log ∆P ) upper bound when the true
answer is Θ(n).

Erickson also used the spread to bound the com-
plexity of Delaunay triangulations in the absence of
refinement [5, 6]. However, even point sets with ex-
ponentially large spread can yield linear size meshes.
Figure 3 illustrates a point set with geometrically
growing spread, but the pacing is small, thus the mesh
size will be linear.

1The asymptotic version of the lower bound as stated in
Theorem 1 also depends on the trivial Ω(n) lower bound from
the Ruppert bounds.

Figure 2: On the left is a typical bad example for
meshing, a small set of points inside a large empty
annulus. On the right shows a similar example after
refinement.
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Figure 3: Point sets with bounded pacing can still
have high spread, i.e. the ratio of largest to smallest
interpoint distances can be 2O(n). In the figure, each
point has arrows directed at its two nearest predeces-
sors.

The use of feature size integrals can also be used in
the anisotropic setting [1]. Pav also gave anisotropic
bounds on mesh size in terms of the smallest angles
allowed[12].

There is a strong connection between the present
work and the linear cost of balancing a quadtree [11].
The corners of quadtree may be viewed as a well-paced
set of points (with pacing = 1). The balancing of the
quadtree refines it, adding only a linear number of
points.

3 Upper Bound

The proof of the upper bound on the feature size in-
tegral will follow a simple pattern. First, we prove
a bound for inputs consisting of only two points
(Lemma 2). Then, we bound the change in the in-
tegral upon adding a single new point (Lemma 3).
Finally, we apply this Lemma inductively to get the
final bound (Theorem 4).
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Lemma 2 (Just two points) If P = {p, q} and
Ω ⊆ ball(p, c|p− q|) for some constant c > 2, then∫

Ω

dx

fP (x)d
≤ Vd(1 + d ln(2c)).

Proof. For all x ∈ Rd, fP (x) ≥ max{ 1
2 |p−q|, |x−p|}.

So, we can rewrite the integral in polar coordinates
(centered at p) and bound it as follows.

∫
Ω

dx

fP (x)d
≤ dVd


1
2 |p−q|∫

0

rd−1dr

( 1
2 |p− q|)d

+

c|p−q|∫
1
2 |p−q|

rd−1dr

rd


≤ dVd

(
1

d
+ ln

(
2c|p− q|
|p− q|

))
= Vd(1 + d ln(2c)).

�

We now bound the change in the feature size integral
induced by the addition of a single point.

Lemma 3 (One more point upper bound) Let

P be a point set and let P ′ = P ∪ {q}. If φ = fP (q)
fP ′ (q)

then∫
Ω

(
1

fP ′(x)d
− 1

fP (x)d

)
dx ≤ Vd (1 + d ln(3dφ)) .

Proof. Let U be the subset of Rd where fP 6= fP ′ .
Clearly, the integral is 0 outside U , so we can re-
strict our attention to U . Let R = fP ′(q); this is
the distance from q to the nearest point of P . This
implies that Rφ = fP (q). For all points x in the ball
B = ball(q, R2 ), fP ′(x) ≥ R

2 , so∫
B

(
1

fP ′(x)d
− 1

fP (x)d

)
dx ≤

∫
B

(
2

R

)d
dx = Vd.

The definitions imply the following bounds for any
x ∈ U :

fP (x) ≤ |x− q|+Rφ,

fP ′(x) ≥ |x− q|.

The upper bound follows because fP is 1-Lipschitz.
The lower bound follows because q must be one of
the two nearest neighbors of x if fP (x) 6= fP ′(x). We
apply these bounds as follows.∫

U\B

(
1

fP ′(x)d
− 1

fP (x)d

)
dx

≤
∫
U\B

(
1

|x− q|d
− 1

(|x− q|+Rφ)d

)
dx

≤ dVd
∫ ∞
R/2

(
1

rd
− 1

(r +Rφ)d

)
rd−1dr

< dVd ln(3dφ).

We have extended the integral over all of Rd \B (the
function is nonnegative) and rewrote it in polar coor-
dinates. The final inequality follows from a straight-
forward calculus exercise (the full proof may be found
in Lemma 7 below). To bound the integral over all of
Ω, we simply add the bounds on the integral over B
and U \B. �

Theorem 4 (Upper bound) Let P = {p1 . . . , pn}
be an ordered set of points such that |p1 − p2| =
diameter(P ). Let Ω ⊆ ball(p1, cdiameter(P )) for
some constant c > 1 be the bounding region. Then,

∫
Ω

dx

fP (x)d
< Vd

(
1 + d ln(2c) +

n∑
i=3

(1 + d ln(3dφi))

)
.

Proof. We rewrite the integral as a telescoping sum:

∫
Ω

dx

fP (x)d
=

∫
Ω

dx

fP2
(x)d

+
n∑
i=3

(∫
Ω

dx

fPi(x)d
−
∫

Ω

dx

fPi−1
(x)d

)
.

The bounds from Lemmas 2 and 3 complete the
proof. �

4 Lower Bound

The proof of the lower bound will be similar to the
proof of the upper bound in that we will use the pac-
ing of a single new point to bound the change in the
feature size integral.

Lemma 5 (One more point lower bound) Let
P be a set of at least 2 points and let P ′ = P ∪ {q}
for some q ∈ Rd. Let Ω ⊂ Rd be a set containing

ball(q,diameter(P ′)). If φ = fP (q)
fP ′ (q)

then

∫
Ω

(
1

fP ′(x)d
− 1

fP (x)d

)
dx ≥ Vd

2d

(
d ln

φ

3
− 1

)

Proof. The bound is trivial if φ ≤ 3, so we may as-
sume that φ > 3. Let R = fP ′(q). Since fP ≥ fP ′ , it
will suffice to prove a lower bound on the change in
the feature size integral over the subset U = {x : R ≤
|x− q| ≤ Rφ

3 } ⊆ Ω. For all x ∈ U ,

fP (x) ≥ 2Rφ

3
, and

fP ′(x) ≤ R+ |x− q| ≤ 2|x− q|.

The lower bound follows because there is at most one
point of P in the interior of ball(q,Rφ). The upper
bound follows because fP ′(x) is 1-Lipschitz. We apply
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these bounds and convert to polar coordinates:∫
U

(
1

fP ′(x)d
− 1

fP (x)d

)
dx

≥
∫
U

(
1

(2|x− q|)d
−
(

3

2Rφ

)d)
dx

>

(
dVd

∫ Rφ
3

R

rd−1

(2r)d
dr

)
− Vd

2d

=
Vd
2d

(
d ln

φ

3
− 1

)
�

When we apply the preceding lemma to a set of n
points, we get the following lower bound.

Theorem 6 (Lower bound) Let P = {p1 . . . , pn}
be an ordered set of points. If Ω ⊂ Rd is a set con-
taining ball(p, 2diameter(P )) for some p ∈ P , then∫

Ω

dx

fP (x)d
>

Vd
2d

n∑
i=3

(
d ln

φi
3
− 1

)
.

5 Some directions for future work

The work of Ruppert on optimal meshing has been
extended to feature size functions that also take into
account input features beyond just point sets, includ-
ing piecewise linear or even piecewise smooth com-
plexes [4]. One direction for future work is to extend
these methods for bounding the feature size to these
settings as well.

It would also be interesting to extend this approach
to anisotropic case, such as in [1]. In that setting, it
is not known how to relax the quality constraints to
guarantee a linear size mesh.

Moreover, since Theorem 1 describes the cost of
adding a single point, it makes sense to apply these
analytic techniques to dynamic meshing problems.
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A A bit of calculus

Lemma 7 Given positive constants φ ≥ 1 and R,∫ ∞
R/2

(
1

rd
− 1

(r +Rφ)d

)
rd−1dr < ln(3dφ).

Proof. We bound this integral using the change of
variables u = Rφ

r + 1 as follows.∫ ∞
R/2

(
1

rd
− 1

(r +Rφ)d

)
rd−1dr =

∫ 1+2φ

1

(
ud − 1

ud(u− 1)

)
du

=

d−1∑
i=0

∫ 1+2φ

1

ui−ddu

< ln(1 + 2φ) +

d−2∑
i=0

1

d− i− 1

< ln(1 + 2φ) + ln d

≤ ln(3dφ). �


