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Abstract

For a metric space Y, the Fréchet distance is a metric on trajectories f, g : [0,1] — Y that
minimizes max;ep,1] dy (f(t), g(h(t))) over continuous reparameterizations h of time. One can

define the generalized Fréchet distance between more complex objects, functions f : X — YV
where X is some topological space that minimizes over homeomorphisms from X — X. This
more general definition has been studied for surfaces and often leads to computationally hard
problems. We show how to compute in polynomial-time signatures for these functions for
which the resulting metric on the signatures can also be computed in polynomial-time and
provides a meaningful lower bound on the generalized Fréchet distance. Our approach uses
persistent homology and exploits the natural invariance of persistence diagrams of functions
to homeomorphisms of the domain. Our algorithm for computing the signatures in Euclidean
spaces uses a new method for computing persistent homology of convex functions on simplicial
complexes which may be of independent interest.

1 Fréchet Distance and Persistent Homology

The Fréchet distance is a popular way to define the distance between curves. If we identify curves
with continuous maps from the interval [0, 1] to the plane (for now), then the Fréchet distance
between f, g : [0,1] — R? is defined as

dr(f,9) = }jglf{tz%ﬁ] 1£(t) — g(h(t))]],

where H is the set of orientation-preserving homeomorphisms from [0, 1] to itself. Composition
with a homeomorphism A allows one to ignore differences that only appear because of a particular
parameterization of the curves.

Other variants include the homotopic [6] and nonmonotone [2] Fréchet distance. Efficient ap-
proximation algorithms are also known [15].

The generalized Fréchet distance can be defined for other maps from (compact) topological
spaces into metric spaces. That is, for f,g: X = Y,

dr(f,9) = ééﬂ%f;l}? dy (f(t),g(h(?))),

where H is the set of homeomorphisms X — X. This has also been studied for simple polygons [4],
folded polygons [18], and other surfaces [20, 5]. It should be noted that the general results for
surfaces require exponential time. Even for maps from R? — R, the problem was only just recently
shown to be in NP and is NP-Hard to approximate within 2 — ¢ [5].
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In this paper, we propose a new way to bound the generalized Fréchet distance using persistent
homology. The great strength of this approach (or weakness depending on your perspective) is
that it provides meaningful bounds without searching for the explicit homeomorphism. Instead,
it computes a signature that is invariant to homeomorphisms. It simply sees past the parame-
terization. Our approach is very similar to both the persistent homology transform of Turner et
al. [26] and the persistence distortion distance of Dey et al. [14]. However, we extend these ideas to
arbitrary metrics and give the first connections between these approaches and the Fréchet distance
(see Section 4). Previous work that used persistence to classify trajectories operated on the range
rather than the domain of the trajectories [24, 23] which results in a (usually much) higher dimen-
sional computation. Persistence diagrams have also been used for computing distances between
road networks [1]. Another important related line involves the natural pseudodistance from size
theory, which is equivalent to the generalized Fréchet distance for functions into R [16, 3].

The primary motivation for considering lower bounds on the Fréchet distance is that they
provide a fast way to filter far apart trajectories or functions. Thus, given a data set of many func-
tions, one can avoid lengthy Fréchet distance computations if the distance between their persistence
signatures is large. This would be useful, for example, when clustering functions, or computing
representative samples. In such cases, it is not important to know the minimizing homeomorphism,
because a certificate that the distance is larger than some constant suffices.

We consider the most common domains for this approach will be simplicial complexes recon-
structed from point clouds. In this case, we show in Section 5 that the technique can still be used
when the domains are not homeomorphic, but only e-homotopy equivalent (see Section 2 for the
definition). This is the type of guarantee provided by several reconstruction results. Thus, we can
still compute a bound on the Fréchet distance between functions from discrete approximations,
even if we don’t have homeomorphic reconstructions.

In Section 6, we resolve the algorithmic challenge of computing exactly these persistence sig-
natures for functions from piecewise linear simplicial complexes to convex metric spaces. As we
illustrate there, the naive approach can be very sensitive to parameterization, exactly the problem
we wish to avoid.

2 Background

Functions. For functions f : A — B and g : B — C, we let g o f denote the composition
(go f)(a) = g(f(a)). For a subset A" C A, we let fj4 denote the restriction of f to the domain A’.
Real-valued functions over a common domain have a natural partial order where we write f < g
to indicate that f(z) < g(z) for all z in the domain. If the domain A of f is a metric space, we
say that f is 1-Lipschitz if for all a,b € A, we have f(a) < f(b) + d(a,b). We will abuse notation
slightly and identify real numbers with constant-valued functions when the domain is clear. For
example, if € € R, then f <& means that f(z) < e for all z in the domain.

Topological Basics. A homeomorphism is a continuous map with a continuous inverse. A
homeomorphism gives a very strong topological equivalence between spaces. For example, a circle
and a square are homeomorphic as are any two simple curves. Two weaker forms of equivalence are
given by homotopy and homology. Two maps f,g: X — Y are homotopic if there is a continuous
map a : X x [0,1] = Y such that a(-,0) = f and a(-,1) = ¢g. If f and g are homotopic, we write
f ~ g. Two spaces X and Y are homotopy equivalent if there are continuous maps a : X — Y and



b:Y — X such that aob ~ idy and boa ~ idx. The spaces are e-homotopy equivalent if moreover
for each z € X, and each y € Y, we have

dx(z,b(a(z))) <e and dy(y,a(b(y))) <e.

We write X ~ Y if X and Y are homotopy equivalent and X ~. Y is X and Y are e-homotopy
equivalent. As examples, a circle and an annulus are homotopy equivalent even though they are
not homeomorphic. The circle and the annulus are e-homotopy equivalent if the annulus is the set
of points within distance € of the circle.

Homology gives a yet weaker notion of equivalence, where “weaker” means more things are
equivalent. Its somewhat more technical algebraic definition is offset by the usefulness afforded by
being computable. In computational geometry and topological data analysis, one often considers
simplicial homology over a field. In that setting, the homology of a simplicial complex is a vector
space whose dimension counts interesting topological features such as connected components and
holes. We refer the reader to standard references for the technical definition [19].

Persistent Homology. For a function f: X — R, where X is a topological space, we can define
a nested sequence of spaces (X, ).cr, where

X ={zeX| f(z)<r}.

This sequence is called a filtration. We will often refer to the pair (X, f) as a filtered space. The
persistent homology of f describes the homology of the inclusion map X, — X for all » < s. The
sequence of homology groups (H(X,)),>0 and the maps (H(X, — X;))s>r>0 form the persistence
module of the filtered space (X, f). Persistent homology tracks the appearance (birth) and disap-
pearance (death) of topological features as the space changes from X_o, to Xo. Throughout we
will assume our functions are tame in that the homology of X, is always finite-dimensional.

A homomorphism between two persistence modules is a collection of maps between the homology
groups at the same index that commute with the corresponding maps at those indices. That is,
for persistence modules X = ((H(X,)), (éf : H(X,) — H(X;))) and Y = ((H(Y;)), (55 : H(Y,) —
H(Y5))), we would have homomorphisms ¢, : H(X,) — H(Y,) for all » > 0 such that ¢50if = jZogp,.
The persistence modules are isomorphic if the homomorphism at each index is an isomorphism.

Every persistence module X has a natural homomorphism into itself by shifting indices. For
€ > 0, the e-shift is denoted 1%. Two persistence modules X and Y are e-interleaved if there exist
homomorphisms ¥ : X — 15 (Y) and ® : Y — 15(X) such that ® o ¥ = 1¥ and ¥ o ® = 127. The
smallest € for which X and Y are e-interleaved is called the interleaving distance.

Homeomorphism Invariance The persistent homology of filtered spaces is invariant to home-
omorphism in the following sense. The proof of this observation (see [11, 10]) is included for
completeness.

Theorem 2.1. (HOMEOMORPHISM INVARIANCE OF PERSISTENT HOMOLOGY) Let X be a topo-
logical space and let h : X — X be a homeomorphism. If f : X — R>qo is a tame, continuous

function, then f o h is tame and Pers(f) = Pers(f o h).

Proof. For any a > 0, the set F,, = f~1[0, a] is homeomorphic to G, = (f oh)™[0,a]. The desired
homeomorphism is just the restriction h,, of h to Fy. It follows from the definitions that h,(z) € F,



if and only if x € G, and similarly for the inverse. Let S > « be fixes and let ¢ and j denote the
inclusions ¢ : F, — Fg and j : G4 — Gg. Then, hgoi = joh,. Thus, (he) induces an isomorphism
of persistence modules, and so, Pers(f) = Pers(f o h). O

Persistence Barcodes. The isomorphism class of a persistence module has a nice representation
as a set of pairs of numbers (b, d) where b is the birth time and d is the death time of a homological
feature. This information is often depicted in the persistence barcode, where the pairs (b,d) are
drawn as intervals or “bars”.

A feature that dies almost immediately after being born may often be ignored. So, for a barcode
D, we write D, := {(b,d) € D | d —b > e}. This “filters” out the least persistent bars.

An e-matching between two persistence barcodes A, B is a bijection m : A’ — B’, where
A, C A CA B.CB' CB,and for all a € A, we have ||[a — m(a)||s < e. That is, we can match
points in A with nearby points in B, possibly ignoring some points with low persistence.

The bottleneck distance between two persistence barcodes A and B is

dp(A, B) := min{e | an e-matching m : A — B exists}

The bottleneck distance can be used to characterize the stability of persistence barcodes with
respect to small changes in a function (see Chazal et al. [7] for a complete treatment of stability).

Theorem 2.2 (Stability of Persistence). Let X be a topological space. For any tame functions
f,9: X =R,
dp(Pers(f), Pers(g)) < [|f — g/l

This is a special case of a more general theorem relating bottleneck distance and interleaving
of persistence modules (again, see [7]).

Theorem 2.3. If X and Y are e-interleaved persistence modules, then dp(X,Y) <e.

This last theorem generalizes the fact that isomorphic persistence modules have identical persis-
tence barcodes. It allows us to work primarily with interleavings of persistence module. However,
the results are easiest to interpret and visualize with respect to the bottleneck distance.

3 Two Perspectives on Persistent Homology

Most popular presentations of persistent homology emphasize shape. Usually there is a distance
function, maybe a point cloud, and invariably, a picture of a torus. Such a treatment is comple-
mented by various stability theorems which imply, for example that for compact subsets A and B
of a metric space, the distance functions a(x) := minyec4 d(z,y) and b(x) := minyep d(z,y) satisfy
the following inequality.

dp(Pers(a), Pers(b)) < dg(A, B).

This is easy to visualize as the right hand side is in terms of Hausdorff distance, which intuitively
corresponds to the amount you need to squint so that you can’t see the difference between the sets.
If A and B are respectively the images of continuous maps fa, fg : X — Y, then

dy (A, B) < dp(fa, fB).



This follows rather directly from the definitions of the two metrics. Combining the preceding two
inequalities, gives that dp(Pers(a), Pers(b)) < dp(fa, F), which is a relationship between bottle-
neck distance and Fréchet distance, but it is rather weak in that it passes through the Hausdorff
distance. Indeed, the failure of the Hausdorff distance to discriminate between curves motivates
the Fréchet distance in the first place.

For example, consider the unit circle. It is the image of both the maps f(¢) = (cos(2t), sin(27t))
and ¢(t) = (cos(4rt),sin(4nt)). So, just looking at the images (i.e. with the Hausdorff distance),
one cannot see a difference. However, their Fréchet distance is nonzero, because it is sensitive to
the fact that one curve traverses the circle twice and the other only once. The distance we will
define in the next section will be similarly sensitive to such differences.

From the shape-oriented perspective, one decides if persistent homology is the right tool based
on whether the problem involves shapes. Then, one replaces shapes with distance functions and
uses the persistent homology of the distance functions to see past geometrically small aberrations.
This is often a valid approach, but as we see, it doesn’t give new insights for bounding the Fréchet
distance.

The alternative perspective on persistent homology espoused in this paper emphasizes the topo-
logical aspects over the geometric aspects, particularly the invariance of persistent homology under
homeomorphism. Recall this means that Pers(g) = Pers(g o h) where g : X — R is tame and
h : X — X is any homeomorphism. For a curve, a change in the parameterization is such a
homeomorphism. The Fréchet distance has a similar invariance to homeomorphism in that

dF(f7g> :dF(f,gOh)

This follows from the fact that the composition of two homeomorphisms is also a homeomorphism,
SO

dr(f,g9) = hzggqug d(f(t),g(ho(t)))

= oy, s d(f(0): (g0 H) (1))

The critical difference is that we are looking at homeomorphism of the domain rather than the
images and we are not worried about limiting ourselves to geometrically small transformations. We
believe that this perspective will find more uses in future work.

4 Fréchet-stable Signatures

The persistence stability theorem says that the mapping from functions to persistence barcodes is
1-Lipschitz as a map between metric spaces. We will use the bottleneck distance as well as the
homeomorphism invariance and stability of persistence barcodes to prove the following relationship
between bottleneck distance and Fréchet distance.

Theorem 4.1. If f, g : [0,1] — R? are two curves in the plane, and n(y) = ||y| is the Euclidean
norm, then
dp(Pers(no f),Pers(nog)) <dr(f,g).



The preceding theorem is actually a corollary of the more general Theorem 4.2 involving the
generalized Fréchet distance and a so-called basis defined as follows. Given a set of points P C Y,
we define for each p € P, the function

np(y) := dy (y,p).

We call the points p € P, basis points, and the functions ny, basis functions. Then, for f: X =Y,
we define the persistence signature of f with respect to P as the following set of persistence barcodes.

Sig(f, P) := {Pers(ny,o f) | p € P}

The bottleneck distance can be used to define a metric from these signatures for a given basis P,
where

dsig(f, 9, P) := ma}gidB(Pers(np o f),Pers(ny o g)).
pe
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Figure 1: Two curves are shown on the left. On the right are their distance functions to a point.
Different parameterizations can lead to quite different distance functions. However, the barcodes
(far right) remain similar.

We are now ready to state and prove the main theorem.

Theorem 4.2. Let X be a topological space and let (Y,dy) be a metric space. For any two
continuous functions f,g: X =Y and any finite P C'Y, we have that

dSig<f7gap) < dF(f7g>

Before proceeding to the proof, we observe that Theorem 4.1 follows from Theorem 4.2 by
letting X = [0,1], Y = R?, and P = {0}.

Proof. Fixany f,g: X - Y and P C Y. Let h: X — X be any homeomorphism and let p € P



be any point.

dp(Pers(ny o f),Pers(n, o g))

= dp(Pers(ny o f),Pers(n, o go h)) [by Thm. 2.1]
<|[[(npo f)—(npogoh)|s [by Thm. 2.2]
= sup ldy (£(2).5) — dy (9(4). ) by definiton]
< Slelg dy (f(x),g(h(x))) [triangle ineq.]

Because the above inequality holds for all homeomorphisms A, it holds for the infimum and so

dp(Pers(ny o f),Pers(ny 0 g)) < dp(f,g).
Moreover, because this holds for all p € P, it follows that dgis(f, g, P) < dr(f,g). O

Note that the proof implies that one can replace the specific choice of the basis functions n, with
any other Lipschitz function on Y. For example, one could compute the minimum distance to the
entire set P rather than individual points. This would introduce unnecessary and counterproductive
symmetries into the signatures as the function would obscure which was the nearest point at any
given time. The specific choice of basis functions was intended to be an example set that exists in
any metric space.

5 Persistent Homology as a Topological Invariant of Functions

The definition of the Fréchet distance doesn’t allow for comparison between functions defined on
different (i.e. non-homeomorphic) spaces. However, there are natural cases in which one would like
to do such a comparison, especially when the images of the functions are reconstructions from a
point cloud. Indeed, this is a natural case to consider as there are several results that allow one to
reconstruct a simplicial complex that is homotopy equivalent, though possibly not homeomorphic
to an unknown underlying space. Some notable examples include the work of Niyogi, Smale, and
Weinberger [22, 21] and the extension by Chazal and Lieutier [8]. Also, techniques related to the
Flow Complex of Giesen and John [17] such as those developed by Dey et al. [13] and Sadri [25]
also give such topological guarantees.

It is currently unknown how to even define the Fréchet distance for functions defined on non-
homeomorphic domains, however, the persistence signature distance can be computed. In this
section, we show that the types of guarantees produced by many of the reconstruction results listed
above can also guarantee a bound on the signature distance. This means that:

If one wants to bound the Fréchet distance between two unknown functions f,g : X — Y it
suffices to bound dagig( f.a, P) for “sufficiently good” reconstructions f and § and any set P C Y.

What exactly counts as “sufficiently good” will be defined below, but we start with a minimum
condition. If f : X Y, f: X = Y and H.(X) % H.(X), then the dsig(f, f, P) will be unbounded.
The reason is simply that nontrivial cycles in the homology produce infinite bars in the barcode
and if the homology differs, then at least one will be left unmatched by any e-matching. Even if
the spaces are homotopy equivalent, there is no guarantee that the homotopy equivalence is nice
with respect to the metric.



Homotopy equivalence is generally a more restrictive equivalence than homology and one might
expect that the homeomorphism of the previous section might be replaced by a homotopy equiv-
alence. However, this is false. Too much information is lost in a homotopy equivalence between
filtered spaces.

Let (X, f) and (Y, g) be filtered spaces. Let X and Y be the corresponding persistence modules.
We are first interested in giving conditions for which a map A : Y — X induces a homomorphism
of the persistence modules Y — X or a shifting homomorphism Y — 1¢(X) for some small € € R.
For a € R, let hy = Ryx,,.

Lemma 5.1. If foh < g+¢, then h induces a homomorphism Y — 1°(X).

Proof. The homomorphism will be composed of the maps induced on homology by the maps h,. It
will suffice to show that the maps exist and commute appropriately on the filtered spaces. We first
need to show that ho(Ys) € Xote. Fix any y € Y,. So, a > g(y) > f(h(y)) + e = f(haly)) +¢.
So, it follows that hy(y) € Xa4e. To complete the proof, it suffices to observe that restrictions hg
and hg commute with the inclusions Y, < Y3 and X,4. < Xgy.. Thus, the induced maps also
commute in homology. O

Now, suppose h : Y — X is a homotopy equivalence. Let h denote its homotopy inverse. Let
ax : X x[0,1] = X and ay : Y x[0,1] — Y be homotopies showing that hoh ~ idx and hoh ~ idy
respectively.

Definition 5.1. The homotopy equivalence h : Y — X is e-monotone with respect to f : X - R
and g Y — R if

(i) foh<g+eandgoh< f+e.

(i) For allt € [0,1]: foa.(-,t) < f+ 2 and
goay(-,t) < g+ 2e.

The preceding definition gives a sufficient condition for the persistent homology to be approxi-
mately preserved by the homotopy equivalence.

Lemma 5.2. Ifh:Y — X is an e-monotone homotopy equivalence with respect to f : X — R and
g:Y — R, then Pers(f) and Pers(g) are e-interleaved.

Proof. Condition (i) of the definition of e-monotone and Lemma 5.1 imply that h and h induce
homomorphisms ® : Y — 15(X) and ¥ : X — 15(Y) respectively. Condition (i¢) in the defini-
tion of e-monotone implies the interleaving condition ® o ¥ = Il%f and Vo & = ]1%{E because the
homomorphisms are all induced by homotopic maps and are therefore equal in homology. ]

Definition 5.2. Let X and Y be subsets of a metric space M. A homotopy equivalence h : Y — X
1s e-metric preserving if for all x € X and ally € Y,

(i) d(y,h(y)) < e and d(z,h(x)) < €.
(ii) For allt € [0,1], d(z,ax(z,t)) < 2e and d(y,ay (y,t)) < 2e.

Lemma 5.3. If f : M — R is 1-Lipschitz and h : Y — X is an e-metric-preserving homotopy
equivalence, then Pers(f|x) and Pers(f|y) are e-interleaved.



Proof. The conditions in the definition of e-metric preserving translate exactly into the conditions
in the definition of e-monotone when you apply the Lipschitz condition. The result then follows
from Lemma 5.2. O

We can now prove a general theorem that gives a bound on the signature distance between two
functions defined on homotopy equivalent domains.

Theorem 5.4. Let X and Y be subsets of a metric space M. Let h :' Y — X be an e-metric
preserving homotopy equivalence. For the inclusion maps f: X — M and g : Y — M, we have
dsig(f, 9, P) <€ for all finite P C M.

Proof. For each basis point p € P, the basis function n, is 1-Lipschitz. Observe that for inclusion
MAaps, Npj;, ¢ = Np O f. The result now follows from the definition of the signature distance and
Lemma 5.3. 0

It may seems like an excessive restriction to only consider inclusion maps, but simple exam-
ples show that some similarly strong constraint is necessary to guarantee that function values of
close points stay close. It is possible to combine Theorem 4.2 and Theorem 5.4 by considering
reparameterizations of X and Y that are homeomorphisms.

6 Discretizing Convex Functions on Piecewise Linear Simplicial
Complexes

The simplicity of the proof of Theorem 4.2 belies the fact that it is not clear how to compute these
signatures in general. Usually, persistent homology is computed using some piecewise linear function
over some discretization of the domain such as a simplicial complex. However, the functions defined
in our signatures do not necessarily come with such a structure, even if the domain is already a
stmplicial complex. This is not surprising given the generality of the result.

In this section, we will show how this computation can be performed in the most common
setting, piecewise-linear simplicial complexes in R?. Our proof will consider the slightly more
general case of arbitrary convex functions over piecewise-linear simplicial complexes.

6.1 What could go wrong?

Let us start with a very simple example to illustrate the difficulty. Suppose we want to bound the
Fréchet distance between two curves, each with just two straight segments. Given, the preceding
sections, it might seem reasonable to just compare the persistence barcodes of the simplicial filtra-
tions induced by the distance function to the origin. Recall that an induced filtration, also known
as a lower-star filtration, is equivalent to the piecewise linear (PL) extension of a function on the
vertices to the rest of the simplicial complex. It is a common practice in TDA to rely on such
PL-approximations to give a simplicial filtration in a format expected by most persistent homology
codes. Also, it is easy to compute as it only requires computing function values at the vertices.
However, in this case, the naive use of a PL-approximation can lead to a very bad answer. In this
section, we will show how the naive approach can fail and how to fix it.

In the figure below, we have two curves that are close in Fréchet distance, but they are split into
two pieces in different ways. The distances functions (as shown on the left of the figure) of each of
these curves to the origin are correspondingly close and as are their persistence barcodes. However,



the induced distance functions (shown in the middle) and the resulting difference in persistence are
significant. By splitting any segment that achieves a local minimum in its relative interior, we can
produce an induced filtration (shown on the right) with exactly the same persistence barcode as the
true distance function (as shown on the left). In this section, we show how to perform an equivalent
subdivision for an arbitrary PL simplicial complex and piecewise convex (distance) function. The
main result is an effective means of producing PL filtrations for the kind of distance functions used
for the signatures in the preceding sections.

Figure 2: (Left) The distance functions to a point are shown for each of the curves on top. (Center)
The PL distance function induced on the given segments. (Right) The PL distance function induced
on a subdivision of the given segments. The barcodes on the left and right are identical, whereas
the barcode in the middle can be quite different.

6.2 An Equivalent PL Filtration

We first show that any convex function on a simplicial complex for which the minimum value on
each simplex is achieved at a vertex has the same persistent homology as the induced filtration on
the same complex. The proof of this fact is a straightforward application of the Persistent Nerve
Lemma (PNL) [9]. Let U = {{U{*}a>0, - --,{US }a>0} be a collection of filtrations. The nerve of U
is the filtered simplicial complex Nrv U in which the complex at scale v is {0 C [n] | ¢, U # 0}.
The PNL implies that if U is convex! for all 7, then the nerve of U has the same persistent
homology as the union filtration {U, ¢}, Ui Fazo-

Lemma 6.1. Let K be a finite simplicial complex. Let f : K — R be a function such that for all
o € K, we have f, is convex and achieves its minimum value at a verter. Let [ : K — R be the

PL filtration on K induced by f. Then, Pers(f) = Pers(f).

Proof. For each simplex 0 € K and each a € R, let U? := {z € ¢ | f(zx) < a}. Similarly, let
U2 :={x eo| f(z) < a}. Note that the sets U® and U2 are convex. Let U* = {U% | 0 € K} and
let U* = {U2 | 0 € K}. For all @ € R, the collection U* and U® form good covers of the a-sublevel
sets of f and f respectively, so that by the Persistent Nerve Lemma, Pers(f) = Pers({Nrv U®}4>0)
and Pers(f) = Pers({Nrv U%}4>0). It will suffice to show that for any «, we have Nrv U® =

!The exact condition is that the sets should be open and all intersections should be empty or contractible. It is
easy to check that for Hausdorff metric topologies, being convex suffices as the open metric neighborhoods of the sets
produce the same nerve.
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Nrv U?, i.e., they are the same filtered simplicial complex. This follows from the assumption that
the function f is minimized at a vertex for each simplex and, by definition, f and f agree at the
vertices. O

6.3 Subdividing a Simplicial Complex

We want to subdivide a simplicial complex into one that satisfies the hypothesis of Lemma 6.1. We
will use the fact that convex functions take a unique minimum value on closed, convex sets and
that local minima are global minima. We will need to add a single vertex for each simplex that
attains its minimum value in its relative interior. For simplicity, we describe the filtration on the
full barycentric subdivision. This approach could produce extra vertices.

Let K be an abstract simplicial complex, i.e. a set of vertices and a family of subsets of vertices
that is closed under taking subsets. Let K denote the geometric realization of K, for example as
the image of some function f: K — Y. A flag in K is a subset of simplices that are totally ordered
by inclusion. The abstract barycentric subdivision of K is the simplicial complex

bary(K) :={S C K | S is a flag of K}

Let p be a basis point. Let b : bary(K) — K be defined so that b(v) = v and b(o) =
argmin,, np(f(z)). That is b gives a point of minimum function value on a simplex. One gets
the desired subdivision of K by considering all simplices {b(0y),...b(ox)} for all flags o9 C o in
bary(K).

7 Future work and open questions

The bounds we give are all one sided. It is not known whether there is a good basis set for every
curve or pair of curves, where “good” here means that the signature distance is a constant factor
approximation to the true Fréchet distance.

It may be that a constant sized set of basis points suffice. However, it is immediate from the
definitions that one ought to be able to replace the discrete set of basis points with a continuous
path of basis points. In that case, the signature could be computed using the Vineyard algorithm
of Cohen-Steiner et al. [12]. This would be the first step towards a coordinate-free version of the
persistent homology transform of Turner et al. [26].

One could also try to use the matching of the persistence barcode to try to find a good matching
between, say curves. This also doesn’t work directly as the following figure illustrates.

In a sense, the difficulty of extracting the matching from the diagram is likely the reason that
the approach can avoid existing NP-hardness results for computing the Fréchet distance exactly.
Still, a more nuanced approach might give a better matching.

This paper established the theoretical basis for this approach of using persistence-based signa-
tures as a substitute for Fréchet distance. In future work, we will explore its usefulness in practice.
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Figure 3: Two very similar curves with small signature distance and small Fréchet distance. The
corresponding local maxima of the distance to the basis point can be quite far.
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